Patents by Inventor James Overbeck

James Overbeck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120235016
    Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.
    Type: Application
    Filed: May 25, 2012
    Publication date: September 20, 2012
    Applicant: Affymetrix, Inc.
    Inventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel Katz, Ksenia Oleinik-Ovod
  • Publication number: 20110243411
    Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.
    Type: Application
    Filed: June 9, 2011
    Publication date: October 6, 2011
    Applicant: AFFYMETRIX, INC.
    Inventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman DeWeerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel M. Katz, Ksenia Oleink-Ovod
  • Patent number: 7983467
    Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: July 19, 2011
    Assignee: Affymetrix, Inc.
    Inventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel M. Katz, Ksenia Oleink-Ovod
  • Patent number: 7871812
    Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: January 18, 2011
    Assignee: Affymetrix, Inc.
    Inventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel M. Katz, Ksenia Oleink-Ovod
  • Publication number: 20100142850
    Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.
    Type: Application
    Filed: February 11, 2010
    Publication date: June 10, 2010
    Applicant: Affymetrix, INC.
    Inventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel Katz, Ksenia Oleink-Ovod
  • Patent number: 7689022
    Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: March 30, 2010
    Assignee: Affymetrix, Inc.
    Inventors: Nathan K. Weiner, Patrick J. Odoy, Erik Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel Katz, Ksenia Oleink-Ovod
  • Publication number: 20060244948
    Abstract: A method for validating a security feature of an object. The method includes measuring spectral data of the object under a first illumination condition and a second illumination condition. The second illumination condition is different than the first illumination condition. The method also includes determining a presence of the security feature based on the spectral data measured under each illumination condition, and comparing the security feature to a standard.
    Type: Application
    Filed: April 12, 2006
    Publication date: November 2, 2006
    Inventor: James Overbeck
  • Publication number: 20060244960
    Abstract: A method for monitoring a process output with a highly abridged spectrophotometer. The method includes securing spectral data for each spectral primary used in a process, measuring spectral data with a highly abridged spectrophotometer for a sample produced by the process, determining an estimated weight for each spectral primary in the sample, and computing spectral data representative of the sample based on the secured spectral data and the determined estimated weight for each spectral primary in the sample.
    Type: Application
    Filed: April 4, 2006
    Publication date: November 2, 2006
    Inventors: James Overbeck, Thomas Richardson
  • Publication number: 20060244935
    Abstract: A method for measuring a flexible colored material during a manufacturing process. The method includes automatically diverting the flexible material from a process path, placing the flexible material in contact with a rotatable drum, and measuring spectral data of the flexible material as the drum rotates. Measuring the spectral data includes scanning the flexible material with a line scanning detector having an array of detectors. The method also includes processing scan information to form a single image of the flexible material.
    Type: Application
    Filed: April 12, 2006
    Publication date: November 2, 2006
    Inventors: James Overbeck, Richard Van Andel
  • Publication number: 20060244806
    Abstract: A method for measuring a like-color region of an object. The method includes defining a first region of a colorimetric image of the object, determining a statistical representation of the first region based on a color metric, and defining a second region of the calorimetric image such that the second region comprises at least a portion of the first region.
    Type: Application
    Filed: April 12, 2006
    Publication date: November 2, 2006
    Inventors: James Overbeck, Christian Boes
  • Publication number: 20060103837
    Abstract: Imaging that uses glare to confirm proper measurement of a sample. An imaging device illuminates an object and generates glare (i.e., specular reflection, diffuse reflection or a combination of the two) off the object's surface, which is displayed on a display as a glare artifact. The location of the glare artifact is compared to a predetermined location to establish adjustment to obtain a desired angular orientation. The imaging device optionally highlights the glare artifact and steers a user to obtain the desired presentation angle. In two other embodiments, the spatial relationship between the imaging device and the object is time-varied. In one, the imaging device monitors changing glare and acquires a measurement when a desired glare is detected. In the other, the imaging device captures multiple images including varying glare artifacts and analyzes the images to select a preferred image having a glare artifact indicative of a desired angular orientation.
    Type: Application
    Filed: December 29, 2005
    Publication date: May 18, 2006
    Inventors: James Overbeck, Richard Van Andel
  • Publication number: 20050285049
    Abstract: Microscopes, including viewing and other microscopic systems, employ a hinged, tiltable plate to adjust focus on a flat object such as a microscope slide or biochip by motion, achieved by tilting, which is substantially normal to the focus point on the plane of the object. By employing two such tiltable arrangements, relatively long scan lines of e.g., flying objective, single pixel on-axis scanning can be accommodated. The tilting support plate is specifically constructed to provide tailored locations for different objects in series along the Y axis of the plate. The plate can accommodate heaters and cooled plates and/or the flat object being examined. In a fluorescence scanning microscope, locations are specifically adapted to receive microscope slides and biochip cartridges such as Affymetrix's “Gene Chip®”. A scanning microscope under computer control, employing such a focusing action, enables unattended scanning of biochips with a simple and economical instrument.
    Type: Application
    Filed: June 3, 2005
    Publication date: December 29, 2005
    Inventors: Jean Montagu, James Overbeck
  • Publication number: 20050278004
    Abstract: A laser system for treating an eye having a cornea, the laser system including a laser beam source capable of generating a laser beam, an eye position detector which includes at least a corneal tracker, the corneal tracker being responsive to movement of an anterior portion of the cornea, the corneal tracker constructed to detect movement of the cornea based on a set of spaced apart optical manifestations from the outer surface of the anterior portion of the cornea, and a beam controller, the beam controller being responsive to the eye position detector to direct the laser beam with controlled energy from the laser beam source to a desired location on the eye.
    Type: Application
    Filed: April 11, 2005
    Publication date: December 15, 2005
    Inventors: Roger Steinert, James Overbeck
  • Publication number: 20050243319
    Abstract: A color measurement instrument includes a housing and illuminators, a two-dimensional photodetector array, and an optics system within the housing. A UV filter wheel closes the housing to prevent contaminants from entering the housing. The filter wheel supports UV filters and non-WV glass that can be selectively aligned with the illuminators. The photodetectors can be read in parallel, and each photodetector includes a unique spectral filter. The optics system delivers light from the sample target area equally to each of the photodetectors.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 3, 2005
    Inventors: Richard Van Andel, James Overbeck
  • Publication number: 20050244302
    Abstract: An apparatus and a method is described for depositing fluid dots on a receiving surface to form an array. The apparatus includes a deposit device cooperatively related with a fluid source, a drop-carrying element coupled to the deposit device, a transport mechanism for positioning the device at a precisely referenced position over the receiving surface, and a drive mechanism for moving the element, relatively, in deposition motion toward and away from the surface.
    Type: Application
    Filed: February 14, 2004
    Publication date: November 3, 2005
    Inventors: James Overbeck, Peter Flowers, Jean Montagu, Myles Mace, Peter Honkanen
  • Publication number: 20050243320
    Abstract: A color measurement instrument includes a housing and illuminators, a two-dimensional photodetector array, and an optics system within the housing. A UV filter wheel closes the housing to prevent contaminants from entering the housing. The filter wheel supports UV filters and non-UV glass that can be selectively aligned with the illuminators. The photodetectors can be read in parallel, and each photodetector includes a unique spectral filter. The optics system delivers light from the sample target area equally to each of the photodetectors.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 3, 2005
    Inventors: Richard Van Andel, James Overbeck
  • Publication number: 20050122518
    Abstract: An instrument and related process for measuring color, shade, gloss, shape and/or translucence of a tooth. First, the instrument uses searchlight illumination to illuminate a tooth with constant irradiance. Second, the instrument uses colorimetric imaging to collect time-separated frames of different wavelengths of light reflected from a tooth and to combine those frames into a color image. Third, the instrument includes a sanitary shield to establish a reference color and a predetermined distance to a target tooth. Fourth, the instrument provides line-of-sight viewing so an operator may simultaneously view a display of the image on the instrument and the object being measured. Fifth, the instrument is impervious to pollutants because it incorporates a sealed measurement window. Sixth, optical measurements of a tooth taken by a dentist are compared to optical measurements of a prosthetic restoration for that tooth to confirm satisfactory matching of optical characteristics of the tooth and restoration.
    Type: Application
    Filed: November 18, 2004
    Publication date: June 9, 2005
    Inventors: James Overbeck, Michael Galen, Richard Van Andel, Christian Boes
  • Publication number: 20050057676
    Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.
    Type: Application
    Filed: October 27, 2004
    Publication date: March 17, 2005
    Applicant: Affymetrix, INC.
    Inventors: Nathan Weiner, Patrick Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David Stura, Albert Bukys, Tim Woolaver, Thomas Regan, David Bradbury, Eric McKenzie, Roger DiPaolo, Christopher Miles, Joel Katz, Ksenia Oleink-Ovod
  • Publication number: 20040012676
    Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.
    Type: Application
    Filed: March 14, 2003
    Publication date: January 22, 2004
    Applicant: Affymetrix, Inc., a Corporation Organized under the Laws of Delaware
    Inventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel Katz, Ksenia Oleink-Ovod
  • Patent number: 6572061
    Abstract: An adjustable base structure supports a person in an upright attitude on uneven terrain and comprises a plate and multiple legs independently pivotally connected to the plate. When in an operative mode, the legs diverge from each other and from the plate and rest on the terrain to orient the plate horizontally. A cable connects the legs and maintains them in the operative mode. A bushing on the plate receives a post of a carrier that is attached to a seat. When the carrier post is in the bushing, the person can sit upright regardless of the contour of the terrain. A dome-shaped pad is joined to each leg for swiveling in a manner that accommodates the terrain and that supports the adjustable base structure in soft soil. Different lengths of the cable are storable inside one of the legs to adjustably limit the amount of pivoting of the legs.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: June 3, 2003
    Assignee: Overbeck/Ahern LLC
    Inventor: James Overbeck