Patents by Inventor James P Steiner

James P Steiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120312576
    Abstract: A mounting plate for a control device is adapted to be coupled to an electrical wallbox and is made of a non-conductive material. The mounting plate comprises at least one faceplate screw opening for receiving a faceplate screw such that a faceplate may be coupled to the mounting plate during installation. The mounting plate further comprises a ground wire. The ground wire is adapted to be coupled to earth ground and is also positioned to overlap a portion of the faceplate screw opening. During the installation of the faceplate, as the faceplate screw is inserted into the faceplate screw opening of the yoke, the faceplate screw contacts the ground wire as well as the faceplate. In the event that the faceplate is made of metal, the faceplate will be coupled to the ground wire, and thus, safely grounded.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 13, 2012
    Applicant: Lutron Electronics Co., Inc.
    Inventors: William Taylor Shivell, James P. Steiner
  • Patent number: 8242708
    Abstract: A multiple location load control system comprises a main device and remote devices, which do not require neutral connections, but allow for visual and audible feedback at the main device and the remote devices. The main device and the remote devices are adapted to be coupled in series electrical connection between an AC power source and an electrical load, and to be further coupled together via an accessory wiring. The remote devices can be wired on the line side and the load side of the load control system, such that the main device is wired “in the middle” of the load control system. The main device is operable to enable a charging path to allow the remote devices to charge power supplies through the accessory wiring during a first time period of a half-cycle of the AC power source. The main device and the remote devices are operable to communicate with each other via the accessory wiring during a second time period of the half-cycle.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: August 14, 2012
    Assignee: Lutron Electronics Co., Inc.
    Inventors: James P. Steiner, Cyril Baby, Christopher Buck, Daniel F. Carmen
  • Patent number: 8228184
    Abstract: A load control system comprises a load control device and a battery-powered occupancy sensor, which transmits a first wireless signal to the load control device in response to detecting the presence of an occupant in a space. The load control system further comprises a visual indicator for providing a visual indication when the magnitude of a battery voltage of a battery of the occupancy sensor has dropped below a predetermined low-battery voltage threshold. The occupancy sensor may comprise the visual indicator, such that the visual indicator is illuminated when the occupancy detects the presence of the occupant in the space and the magnitude of the battery voltage is less than the predetermined threshold. Alternatively, the load control device may comprise the visual indicator, such that the visual indicator is illuminated in response to receiving a second wireless signal, which is transmitting by the occupancy sensor when the magnitude of the battery voltage is less than the predetermined threshold.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: July 24, 2012
    Assignee: Lutron Electronics Co., Inc.
    Inventors: Matthew Robert Blakeley, James P. Steiner, Adam J. Schrems
  • Patent number: 8193744
    Abstract: A method for controlling the speed of an AC motor by means of an AC motor speed control having a plurality of capacitors operable to be selectively coupled in parallel electrical connection, the parallel coupled capacitors operable to be coupled in series electrical connection with the AC motor, the method comprising charging the capacitors up to substantially the same predetermined voltage prior to combining the capacitors in parallel electrical connection.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: June 5, 2012
    Assignee: Lutron Electronics Co., Inc.
    Inventors: James P. Steiner, Aaron Dobbins, Chen Ming Wu
  • Publication number: 20120133287
    Abstract: A sensing device transmits wireless signals when an error between at least one sampled parameter value and at least one predicted parameter value is too great, such that the sensing device transmits wireless signals to a load control device using a variable transmission rate that is dependent upon the amount of change in a value of the parameter. The sensing device uses the one or more estimators to determine the predicted parameter value, and may transmit the estimators to the load control device if the error is too great. The load control device uses the estimators to determine at least one estimated parameter value and controls the electrical load in response to the estimated parameter value. The sensing device may comprise, for example, a daylight sensor for measuring a total light intensity in the space around the sensor or a temperature sensor for measuring a temperature around the sensor.
    Type: Application
    Filed: January 31, 2012
    Publication date: May 31, 2012
    Applicant: LUTRON ELECTRONICS CO., INC.
    Inventors: James P. Steiner, Greg Edward Sloan
  • Publication number: 20120068824
    Abstract: A system for independent control of electric motors and electric lights includes a plurality of two-wire wallstations coupled in series via power wires between an alternating-current (AC) source and a light/motor control unit. The light/motor control unit is preferably located in the same enclosure as an electric motor and an electric light and has two outputs for independent control of the motor and the light. The light/motor control unit and the wallstations each include a controller and a communication circuit that is coupled to the power wiring via a communication transformer and communicate with each other using a loop current carrier technique. The light/motor control unit and the wallstations utilize pseudo random orthogonal codes and a median filter in the communication process.
    Type: Application
    Filed: October 11, 2011
    Publication date: March 22, 2012
    Inventors: James P. Steiner, Aaron Dobbins
  • Publication number: 20120068686
    Abstract: A load control system controls an electrical load provided in a space and comprises a load control device and a first occupancy sensor mounted to a moving structure (e.g., a door) and a second occupancy sensor mounted to a fixed surface (e.g., a wall or a ceiling). The load control device controls the load in response to the wireless control signals received from the occupancy sensors. The first occupancy sensor transmits an occupied wireless control signal to the load control device in response to detecting the movement of the moving structure. The second occupancy sensor transmits an occupied wireless control signal to the load control device in response to detecting the occupancy condition. The load control device turns on the load in response to receiving the occupied control signal from the first occupancy sensor, and turns off the load in response to receiving vacant control signals from both of the occupancy sensors.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 22, 2012
    Inventors: James P. Steiner, Andrew Peter Schmalz, Andrew Ryan Offenbacher, Adam J. Schrems, Brian Raymond Valenta
  • Publication number: 20120068611
    Abstract: A load control system controls a lighting load provided in a space and comprises a load control device and one or more occupancy sensors. The load control device controls the load in response to the wireless control signals received from the occupancy sensors. Each occupancy sensor transmits an occupied control signal to the load control device in response to detecting an occupancy condition in the space and a vacant control signal to the load control device in response to detecting a vacancy condition. The load control device adjusts the intensity of the load to a first intensity in response to receiving the occupied control signal from at least one of the occupancy sensors, and adjusts the intensity of the load to a second intensity less than the first intensity (e.g., a non-off intensity) in response to receiving vacant control signals from both of the occupancy sensors.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 22, 2012
    Inventors: James P. Steiner, Andrew Peter Schmalz, Andrew Ryan Offenbacher, Adam J. Schrems, Brian Raymond Valenta
  • Publication number: 20120051444
    Abstract: A system for independent control of electric motors and electric lights includes a plurality of two-wire wallstations coupled in series via power wires between an alternating-current (AC) source and a light/motor control unit. The light/motor control unit is preferably located in the same enclosure as an electric motor and an electric light and has two outputs for independent control of the motor and the light. The light/motor control unit and the wallstations each include a controller and a communication circuit that is coupled to the power wiring via a communication transformer and communicate with each other using a loop current carrier technique. The light/motor control unit and the wallstations utilize pseudo random orthogonal codes and a median filter in the communication process.
    Type: Application
    Filed: October 11, 2011
    Publication date: March 1, 2012
    Inventors: James P. Steiner, Aaron Dobbins, Edward J. Blair
  • Patent number: 8068014
    Abstract: A system for independent control of electric motors and electric lights includes a plurality of two-wire wallstations coupled in series via power wires between an alternating-current (AC) source and a light/motor control unit. The light/motor control unit is preferably located in the same enclosure as an electric motor and an electric light and has two outputs for independent control of the motor and the light. The light/motor control unit and the wallstations each include a controller and a communication circuit that is coupled to the power wiring via a communication transformer and communicate with each other using a loop current carrier technique. The light/motor control unit and the wallstations utilize pseudo random orthogonal codes and a median filter in the communication process.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: November 29, 2011
    Assignee: Lutron Electronics Co., Inc.
    Inventors: James P. Steiner, Aaron Dobbins, Edward J. Blair
  • Publication number: 20110257808
    Abstract: A load control system controls an electrical load provided in a space and comprises a load control device and one or more occupancy sensors. The load control device controls the load in response to the wireless control signals received from the occupancy sensors. Each occupancy sensor transmits an occupied control signal to the load control device in response to detecting an occupancy condition in the space and a vacant control signal to the load control device in response to detecting a vacancy condition. The load control device turns on the load in response to receiving the occupied control signal from at least one of the occupancy sensors, and turns off the load in response to receiving vacant control signals from both of the occupancy sensors. The load control device is operable to determine that no wireless control signals have been received from the occupancy sensors for the length of a predetermined timeout period and to subsequently turn off the load.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 20, 2011
    Inventors: James P. Steiner, Andrew Peter Schmalz, Andrew Ryan Offenbacher, Adam J. Schrems, Brian Raymond Valenta
  • Patent number: 8009042
    Abstract: A load control system controls an electrical load provided in a space and comprises a load control device and one or more occupancy sensors. The load control device controls the load in response to the wireless control signals received from the occupancy sensors. Each occupancy sensor transmits an occupied control signal to the load control device in response to detecting an occupancy condition in the space and a vacant control signal to the load control device in response to detecting a vacancy condition. The load control device turns on the load in response to receiving the occupied control signal from at least one of the occupancy sensors, and turns off the load in response to receiving vacant control signals from both of the occupancy sensors. The load control device is operable to determine that no wireless control signals have been received from the occupancy sensors for the length of a predetermined timeout period and to subsequently turn off the load.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: August 30, 2011
    Assignee: Lutron Electronics Co., Inc.
    Inventors: James P. Steiner, Andrew Peter Schmalz, Andrew Ryan Offenbacher, Adam J. Schrems, Brian Raymond Valenta
  • Patent number: 7940167
    Abstract: A battery-powered occupancy sensor for detecting an occupancy condition in a space comprises first and second batteries, an occupancy detector circuit, a controller, and a wireless transmitter for transmitting a first wireless signal in response to the occupancy detector circuit detecting the occupancy condition in the space. The controller and the wireless transmitter are powered by the first battery, while only the occupancy detector circuit is powered by the second battery, such that the occupancy detector circuit is isolated from noise generated by the controller and the wireless transmitter. The occupancy detector circuit draws a current having a magnitude of approximately 5 microamps or less from the second battery. The occupancy sensor transmits a second wireless signal is response to determining that the voltage of one of the batteries has dropped too low.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: May 10, 2011
    Assignee: Lutron Electronics Co., Inc.
    Inventors: James P. Steiner, Andrew Peter Schmalz, Greg Edward Sloan
  • Publication number: 20110074222
    Abstract: A multiple location load control system comprises a main device and remote devices, which do not require neutral connections, but allow for visual and audible feedback at the main device and the remote devices. The main device and the remote devices are adapted to be coupled in series electrical connection between an AC power source and an electrical load, and to be further coupled together via an accessory wiring. The remote devices can be wired on the line side and the load side of the load control system, such that the main device is wired “in the middle” of the load control system. The main device is operable to enable a charging path to allow the remote devices to charge power supplies through the accessory wiring during a first time period of a half-cycle of the AC power source. The main device and the remote devices are operable to communicate with each other via the accessory wiring during a second time period of the half-cycle.
    Type: Application
    Filed: December 3, 2010
    Publication date: March 31, 2011
    Applicant: LUTRON ELECTRONICS CO., INC.
    Inventors: James P. Steiner, Cyril Baby, Christopher Buck, Daniel F. Carmen
  • Patent number: 7872429
    Abstract: A multiple location load control system comprises a main device and remote devices, which do not require neutral connections, but allow for visual and audible feedback at the main device and the remote devices. The main device and the remote devices are adapted to be coupled in series electrical connection between an AC power source and an electrical load, and to be further coupled together via an accessory wiring. The remote devices can be wired on the line side and the load side of the load control system, such that the main device is wired “in the middle” of the load control system. The main device is operable to enable a charging path to allow the remote devices to charge power supplies through the accessory wiring during a first time period of a half-cycle of the AC power source. The main device and the remote devices are operable to communicate with each other via the accessory wiring during a second time period of the half-cycle.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: January 18, 2011
    Assignee: Lutron Electronics Co., Inc.
    Inventors: James P. Steiner, Cyril Baby, Christopher Buck, Daniel F. Carmen
  • Publication number: 20100244709
    Abstract: A wireless battery-powered daylight sensor for measuring a total light intensity in a space is operable to transmit wireless signals using a variable transmission rate that is dependent upon the total light intensity in the space. The sensor comprises a photosensitive circuit, a wireless transmitter for transmitting the wireless signals, a controller coupled to the photosensitive circuit and the wireless transmitter, and a battery for powering the photosensitive circuit, the wireless transmitter, and the controller. The photosensitive circuit is operable to generate a light intensity control signal in response to the total light intensity in the space. The controller transmits the wireless signals in response to the light intensity control signal using the variable transmission rate that is dependent upon the total light intensity in the space. The variable transmission rate may be dependent upon an amount of change of the total light intensity in the space.
    Type: Application
    Filed: March 19, 2010
    Publication date: September 30, 2010
    Applicant: LUTRON ELECTRONICS CO., INC.
    Inventors: James P. Steiner, Greg Edward Sloan
  • Publication number: 20100244706
    Abstract: A wireless lighting control system comprises a daylight sensor for measuring a light intensity in a space and a dimmer switch for controlling the amount of power delivered to a lighting load in response to the daylight sensor. For example, the daylight sensor may be able to transmit radio-frequency (RF) signals to the dimmer switch. The system provides methods of calibrating the daylight sensor that allow for automatically measuring and/or calculating one or more operational characteristics of the daylight sensor. One method of calibrating the daylight sensor comprises a “single-button-press” calibration procedure during which a user is only required to actuate a calibration button of the daylight sensor once. In addition, the daylight sensor is operable to automatically measure the total light intensity in the space at night to determine the light intensity of only the electrical light generated by the lighting load.
    Type: Application
    Filed: March 19, 2010
    Publication date: September 30, 2010
    Applicant: LUTRON ELECTRONICS CO., INC.
    Inventors: James P. Steiner, Greg Edward Sloan
  • Patent number: 7728564
    Abstract: A load control device is adapted to be disposed in series with an AC voltage source and an electrical load and is operable to provide substantially all voltage provided by the AC voltage source to the load. The load control device comprises a controllably conductive device, a controller, a zero-crossing detector, and a power supply for generating a substantially DC voltage for powering the controller. The power supply is operable to charge an energy storage device to a predetermined amount of energy each half-cycle. The controller is operable to determine when the power supply has stopped charging from the zero-crossing detector each half-cycle, and to immediately render the controllably conductive device conductive to conduct the full load current. Before the controllably conductive device begins to conduct each half-cycle, only a minimal voltage develops across the power supply to allow the energy storage device to charge.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: June 1, 2010
    Assignee: Lutron Electronics Co., Inc.
    Inventors: William Bryce Fricke, Aaron Dobbins, James P. Steiner, Chen Ming Wu, Russell Weightman, David J. Perreault, Ryan Lane, Joseph William Sapp, Kyle A. McCarter
  • Publication number: 20100109597
    Abstract: A method for controlling the speed of an AC motor by means of an AC motor speed control having a plurality of capacitors operable to be selectively coupled in parallel electrical connection, the parallel coupled capacitors operable to be coupled in series electrical connection with the AC motor, the method comprising charging the capacitors up to substantially the same predetermined voltage prior to combining the capacitors in parallel electrical connection.
    Type: Application
    Filed: October 28, 2009
    Publication date: May 6, 2010
    Applicant: LUTRON ELECTRONICS CO., INC.
    Inventors: James P. Steiner, Aaron Dobbins, Chen Ming Wu
  • Publication number: 20100052576
    Abstract: A load control system controls an electrical load provided in a space and comprises a load control device and one or more occupancy sensors. The load control device controls the load in response to the wireless control signals received from the occupancy sensors. Each occupancy sensor transmits an occupied control signal to the load control device in response to detecting an occupancy condition in the space and a vacant control signal to the load control device in response to detecting a vacancy condition. The load control device turns on the load in response to receiving the occupied control signal from at least one of the occupancy sensors, and turns off the load in response to receiving vacant control signals from both of the occupancy sensors. The load control device is operable to determine that no wireless control signals have been received from the occupancy sensors for the length of a predetermined timeout period and to subsequently turn off the load.
    Type: Application
    Filed: September 3, 2008
    Publication date: March 4, 2010
    Inventors: James P. Steiner, Andrew Peter Schmalz, Andrew Ryan Offenbacher, Adam J. Schrems, Brian Raymond Valenta