Patents by Inventor James P Steiner
James P Steiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240040685Abstract: A load control device is configured to generate a control signal having a desired magnitude for controlling a load regulation device adapted to control the power delivered to an electrical load. The load control device may comprise a control terminal arranged to provide the control signal to the load regulation device, a communication circuit for generating the control signal, and a control circuit configured to generate an output signal that is provided to the communication circuit. The communication circuit may be characterized by non-linear operation. The control circuit may adjust the magnitude of the output signal in response to the difference between the magnitude of the control signal and the desired magnitude to adjust the magnitude of the control signal towards the desired magnitude. The control circuit may also be configured to determine if an incompatible load regulation device is coupled to the load control device.Type: ApplicationFiled: October 10, 2023Publication date: February 1, 2024Applicant: Lutron Technology Company LLCInventors: James P. Steiner, Daniel G. Cooper, Ryan S. Bedell
-
Patent number: 11885672Abstract: A wireless battery-powered daylight sensor for measuring a total light intensity in a space is operable to transmit wireless signals using a variable transmission rate that is dependent upon the total light intensity in the space. The sensor comprises a photosensitive circuit, a wireless transmitter for transmitting the wireless signals, a controller coupled to the photosensitive circuit and the wireless transmitter, and a battery for powering the photosensitive circuit, the wireless transmitter, and the controller. The photosensitive circuit is operable to generate a light intensity control signal in response to the total light intensity in the space. The controller transmits the wireless signals in response to the light intensity control signal using the variable transmission rate that is dependent upon the total light intensity in the space. The variable transmission rate may be dependent upon an amount of change of the total light intensity in the space.Type: GrantFiled: January 31, 2022Date of Patent: January 30, 2024Assignee: Lutron Technology Company LLCInventors: James P. Steiner, Greg Edward Sloan, Nathan A. Boring
-
Patent number: 11869344Abstract: A load control system may include multiple control devices that may send load control messages to load control devices for controlling an amount of power provided electrical loads. To prevent collision of the load control messages, the load control messages may be transmitted using different wireless communication channels. Each wireless communication channel may be assigned to a load control group that may include control devices and load control devices capable of communicating with one another on the assigned channel. A control device may send load control messages to a load control device within a transmission frame allocated for transmitting load control messages. The transmission frame may include equal sub-frames and load control messages may be sent at a random time within each sub-frame. Control devices may detect a status event within a sampling interval to offset transmissions from multiple control devices based on detection of the same event.Type: GrantFiled: November 30, 2020Date of Patent: January 9, 2024Assignee: Lutron Technology Company LLCInventors: John H. Bull, Jordan H. Crafts, James P. Steiner
-
Patent number: 11853094Abstract: A mobile device that is configured for wireless communication may be configured to operate as a remote control device in a lighting control system, controlling one or more lighting control devices of the lighting control system. The remote control device may control the light intensity in a space, for instance at a location of the remote control device, in response to an ambient light intensity measured at the remote control device. The remote control device may define a user interface for receiving an input that indicates a desired light intensity at the location. The remote control device may measure the ambient light intensity at the location via a light detector, compare the measured ambient light intensity to the desired light intensity, and cause the one or more lighting control devices to adjust the ambient light intensity at the remote control device until it agrees with the desired light intensity.Type: GrantFiled: February 18, 2022Date of Patent: December 26, 2023Assignee: Lutron Technology Company LLCInventors: Jeffrey Karc, James P. Steiner, William Bryce Fricke
-
Patent number: 11849518Abstract: A load control device is configured to generate a control signal having a desired magnitude for controlling a load regulation device adapted to control the power delivered to an electrical load. The load control device may comprise a control terminal arranged to provide the control signal to the load regulation device, a communication circuit for generating the control signal, and a control circuit configured to generate an output signal that is provided to the communication circuit. The communication circuit may be characterized by non-linear operation. The control circuit may adjust the magnitude of the output signal in response to the difference between the magnitude of the control signal and the desired magnitude to adjust the magnitude of the control signal towards the desired magnitude. The control circuit may also be configured to determine if an incompatible load regulation device is coupled to the load control device.Type: GrantFiled: June 30, 2022Date of Patent: December 19, 2023Assignee: Lutron Technology Company LLCInventors: James P. Steiner, Daniel G. Cooper, Ryan S. Bedell
-
Publication number: 20230393269Abstract: A sensor device may include a signal generator circuit configured to generate a supplemental signal that is combined with an ultrasonic reception voltage signal generated by an ultrasonic receiving element in response to received ultrasonic waves. The sensor device may comprise an ultrasonic receiving circuit configured to receive the combination of the ultrasonic reception voltage signal and the supplemental signal, and generate a detection signal that indicates when the space is occupied. The sensor device may also comprise a control circuit configured to receive the detection signal and detect an occupancy condition in the space in response to the detection signal. The combination of the supplemental signal with the ultrasonic reception voltage signal may ensure that the magnitudes of signals processed by the ultrasonic receiving circuit are large enough that the ultrasonic receiving circuit may appropriately generate the detection signal and the control circuit may detect the occupancy condition.Type: ApplicationFiled: May 5, 2023Publication date: December 7, 2023Applicant: Lutron Technology Company LLCInventor: James P. Steiner
-
Patent number: 11832365Abstract: A visible light sensor (VLS) may be configured to sense environmental characteristics using images of a space. The VLS may be controlled in one or more modes, including a daylight glare sensor mode, a daylighting sensor mode, a color sensor mode, and/or an occupancy/vacancy sensor mode. In the daylight glare sensor mode, the VLS may be configured to decrease or eliminate glares. In the daylighting sensor mode and/or color sensor mode, the VLS may be configured to provide a preferred amount of light and color temperature, respectively, within the space. In the occupancy/vacancy sensor mode, the VLS may be configured to detect an occupancy/vacancy condition within the space and adjust one or more control devices according to the occupation or vacancy of the space. The visible light sensor may be configured to protect the privacy of users within the space via software, a removable module, and/or a special sensor.Type: GrantFiled: May 6, 2022Date of Patent: November 28, 2023Assignee: Lutron Technology Company LLCInventors: Rhodes B. Baker, Craig Alan Casey, Galen Edgar Knode, Brent Protzman, Thomas M. Shearer, James P. Steiner
-
Publication number: 20230363071Abstract: A load control system controls an electrical load provided in a space and comprises a load control device and one or more occupancy sensors. The load control device controls the load in response to the wireless control signals received from the occupancy sensors. Each occupancy sensor transmits an occupied control signal to the load control device in response to detecting an occupancy condition in the space and a vacant control signal to the load control device in response to detecting a vacancy condition. The load control device turns on the load in response to receiving the occupied control signal from at least one of the occupancy sensors, and turns off the load in response to receiving vacant control signals from both of the occupancy sensors. The load control device is operable to determine that no wireless control signals have been received from the occupancy sensors for the length of a predetermined timeout period and to subsequently turn off the load.Type: ApplicationFiled: July 5, 2023Publication date: November 9, 2023Applicant: Lutron Technology Company LLCInventors: James P. Steiner, Andrew Peter Schmalz, Andrew Ryan Offenbacher, Adam J. Schrems, Brian Raymond Valenta
-
Publication number: 20230325023Abstract: A control device configured for use in a load control system to control one or more electrical loads may comprise an actuation member having a front surface defining a touch sensitive surface configured to detect a point actuation along at least a portion of the front surface, a touch sensitive circuit, and a control circuit. The touch sensitive device may comprise one or more receiving capacitive touch pads located behind the actuation member and arranged in a linear array adjacent to the touch sensitive surface. The control circuit may be configured to operate using different filtering techniques based on the state/mode of the control device and/or based on whether the positions of point actuations by a user along the touch sensitive surface indicate a fine tune or gross adjustment by the user. For example, the control circuit may generate an output signal using light/no filtering or using heavy filtering.Type: ApplicationFiled: June 15, 2023Publication date: October 12, 2023Applicant: Lutron Technology Company LLCInventors: Dinesh Sundara Moorthy, Christoph Porwol, James P. Steiner
-
Publication number: 20230305131Abstract: An occupant detection device (e.g., sensor) may include an occupant detection circuit (e.g., a radar occupant detection circuit) and a control circuit. The occupant detection circuit may determine the location of an occupant in a space with reference to a global coordinate associated with the detection circuit and the control circuit may transform the location of the occupant into a local coordinate system associated with a region of interest in the space. The control circuit may use the location information to determine whether the occupant has entered or left the region of interest and adjust an occupant count for the region of interest based on the determination. The control circuit may acquire knowledge about the region of interest during a configuration or commissioning procedure.Type: ApplicationFiled: April 13, 2023Publication date: September 28, 2023Applicant: Lutron Technology Company LLCInventor: James P. Steiner
-
Publication number: 20230299658Abstract: A load control device for controlling power delivered from an alternating-current power source to an electrical load may comprise a controllably conductive device, a control circuit, and an overcurrent protection circuit that is configured to be disabled when the controllably conductive device is non-conductive. The control circuit may be configured to control the controllably conductive device to be non-conductive at the beginning of each half-cycle of the AC power source and to render the controllably conductive device conductive at a firing time during each half-cycle (e.g., using a forward phase-control dimming technique). The overcurrent protection circuit may be configured to render the controllably conductive device non-conductive in the event of an overcurrent condition in the controllably conductive device.Type: ApplicationFiled: May 23, 2023Publication date: September 21, 2023Applicant: Lutron Technology Company LLCInventors: Dinesh Sundara Moorthy, James P. Steiner
-
Publication number: 20230292421Abstract: A visible light sensor may be configured to sense environmental characteristics of a space using an image of the space. The visible light sensor may be controlled in one or more modes, including a daylight glare sensor mode, a daylighting sensor mode, a color sensor mode, and/or an occupancy/vacancy sensor mode. In the daylight glare sensor mode, the visible light sensor may be configured to decrease or eliminate glare within a space. In the daylighting sensor mode and the color sensor mode, the visible light sensor may be configured to provide a preferred amount of light and color temperature, respectively, within the space. In the occupancy/vacancy sensor mode, the visible light sensor may be configured to detect an occupancy/vacancy condition within the space and adjust one or more control devices according to the occupation or vacancy of the space. The visible light sensor may be configured to protect the privacy of users within the space via software, a removable module, and/or a special sensor.Type: ApplicationFiled: May 18, 2023Publication date: September 14, 2023Applicant: Lutron Technology Company LLCInventors: Craig Alan Casey, Brent Protzman, James P. Steiner
-
Patent number: 11743999Abstract: A load control system controls an electrical load provided in a space and comprises a load control device and one or more occupancy sensors. The load control device controls the load in response to the wireless control signals received from the occupancy sensors. Each occupancy sensor transmits an occupied control signal to the load control device in response to detecting an occupancy condition in the space and a vacant control signal to the load control device in response to detecting a vacancy condition. The load control device turns on the load in response to receiving the occupied control signal from at least one of the occupancy sensors, and turns off the load in response to receiving vacant control signals from both of the occupancy sensors. The load control device is operable to determine that no wireless control signals have been received from the occupancy sensors for the length of a predetermined timeout period and to subsequently turn off the load.Type: GrantFiled: September 20, 2021Date of Patent: August 29, 2023Assignee: Lutron Technology Company LLCInventors: James P. Steiner, Andrew Peter Schmalz, Andrew Ryan Offenbacher, Adam J. Schrems, Brian Raymond Valenta
-
Publication number: 20230261511Abstract: A load control device for controlling power delivered from an AC power source to an electrical device may be configured to conduct current through earth ground and may disconnect a switching circuit to reduce an amount of current conducted through the earth ground. The load control device may comprise a controllably conductive device configured to control the power delivered from the AC power source to the electrical device so as to generate a switched-hot voltage, a switching circuit electrically coupled with a detect circuit, and a control circuit configured to render the switching circuit conductive and nonconductive. The detect circuit may generate a detect signal indicating a magnitude of the switched-hot voltage. The control circuit may be configured to monitor the detect signal and to render the switching circuit non-conductive after detecting an edge on the detect signal to reduce the total current through the earth ground.Type: ApplicationFiled: May 1, 2023Publication date: August 17, 2023Applicant: Lutron Technology Company LLCInventors: Dinesh Sundara Moorthy, James P. Steiner
-
Publication number: 20230260137Abstract: A sensor may be configured to determine how many people that have entered or exited a space. The sensor may comprise a pyroelectric infrared (PIR) detection circuit capable of generating different output signal patterns in response to a person entering or exiting the space. The sensor may determine whether the person has entered or exited the space based on the output signal pattern. The sensor may include a thermopile array, a radar detection circuit, or a visible light sensing circuit. The thermopile array, radar detection circuit, or visible light sensing circuit may be capable of detecting a person's location and/or movements within an area monitored by the sensor and determining, based on the detected movements, whether the person has entered or left the space. An occupant count of the space may then be determined accordingly by the sensor or by a system controller.Type: ApplicationFiled: April 26, 2023Publication date: August 17, 2023Applicant: Lutron Technology Company LLCInventor: James P. Steiner
-
Publication number: 20230239981Abstract: A visible light sensor may be configured to sense environmental characteristics of a space using an image of the space. The visible light sensor may be controlled in one or more modes, including a daylight glare sensor mode, a daylighting sensor mode, a color sensor mode, and/or an occupancy/vacancy sensor mode. In the daylight glare sensor mode, the visible light sensor may be configured to decrease or eliminate glare within a space. In the daylighting sensor mode and the color sensor mode, the visible light sensor may be configured to provide a preferred amount of light and color temperature, respectively, within the space. In the occupancy/vacancy sensor mode, the visible light sensor may be configured to detect an occupancy/vacancy condition within the space and adjust one or more control devices according to the occupation or vacancy of the space. The visible light sensor may be configured to protect the privacy of users within the space via software, a removable module, and/or a special sensor.Type: ApplicationFiled: April 3, 2023Publication date: July 27, 2023Applicant: Lutron Technology Company LLCInventors: Craig Alan Casey, Brent Protzman, James P. Steiner
-
Publication number: 20230238908Abstract: A load control device may control power delivered from a power source, such as an alternating-current (AC) power source, to at least two electrical loads, such as a lighting load and a motor load. The load control device may include multiple load control circuit, such as a dimmer circuit and a motor drive circuit, for controlling the power delivered to the lighting load and the motor load, respectively. The load control device may adjust the rotational speed of the motor load in a manner so as to minimize acoustic noise generated by the load control device and reduce the amount of time required to adjust the rotational speed of the motor load. The load control device may remain powered when one of the electrical loads (e.g., the lighting load) has been removed (e.g., electrically disconnected or uninstalled) and/or has failed in an open state (has “burnt out” or “blown out”).Type: ApplicationFiled: March 21, 2023Publication date: July 27, 2023Applicant: Lutron Technology Company LLCInventors: James P. Steiner, Dinesh Sundara Moorthy
-
Patent number: 11703974Abstract: A control device configured for use in a load control system to control one or more electrical loads may comprise an actuation member having a front surface defining a touch sensitive surface configured to detect a point actuation along at least a portion of the front surface, a touch sensitive circuit, and a control circuit. The touch sensitive device may comprise one or more receiving capacitive touch pads located behind the actuation member and arranged in a linear array adjacent to the touch sensitive surface. The control circuit may be configured to operate using different filtering techniques based on the state/mode of the control device and/or based on whether the positions of point actuations by a user along the touch sensitive surface indicate a fine tune or gross adjustment by the user. For example, the control circuit may generate an output signal using light/no filtering or using heavy filtering.Type: GrantFiled: December 21, 2021Date of Patent: July 18, 2023Assignee: Lutron Technology Company LLCInventors: James P. Steiner, Dinesh Sundara Moorthy, Christoph Porwol
-
Patent number: 11699946Abstract: A load control device for controlling power delivered from an alternating-current power source to an electrical load may comprise a controllably conductive device, a control circuit, and an overcurrent protection circuit that is configured to be disabled when the controllably conductive device is non-conductive. The control circuit may be configured to control the controllably conductive device to be non-conductive at the beginning of each half-cycle of the AC power source and to render the controllably conductive device conductive at a firing time during each half-cycle (e.g., using a forward phase-control dimming technique). The overcurrent protection circuit may be configured to render the controllably conductive device non-conductive in the event of an overcurrent condition in the controllably conductive device.Type: GrantFiled: January 28, 2022Date of Patent: July 11, 2023Assignee: Lutron Technology Company LLCInventors: Dinesh Sundara Moorthy, James P. Steiner
-
Patent number: RE49828Abstract: A low-cost, simple ultrasonic sensing system has an increased detection range. The ultrasonic sensing system may be implemented as part of a load control system for controlling the power delivered from an AC power source to an electrical load. The load control system may comprise a load control device for controlling the power delivered to the electrical load, an ultrasonic receiver for receiving ultrasonic waves characterized by an ultrasonic frequency, and an ultrasonic transmitter located remotely from the ultrasonic receiver. The load control device controls the power delivered to the electrical load in response to the ultrasonic waves received by the ultrasonic receiver. The load control device may include the ultrasonic receiver and may be a wall-mounted load control device. The ultrasonic receiver may be a wireless ultrasonic receiver for transmitting wireless signals to the load control device in response to the ultrasonic waves received by the ultrasonic receiver.Type: GrantFiled: August 21, 2020Date of Patent: February 6, 2024Assignee: Lutron Technology Company LLCInventors: James P. Steiner, Greg Edward Sloan