Patents by Inventor James Patrick Doyle

James Patrick Doyle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8241957
    Abstract: A method for fabricating a negative thermal expanding system device includes coating a wafer with a thermally decomposable polymer, patterning the decomposable polymer into repeating disk patterns, releasing the decomposable polymer from the wafer and forming a sheet of repeating patterned disks, suspending the sheet into a first solution with seeding compounds for electroless decomposition, removing the sheet from the first solution, suspending the sheet into a second solution to electrolessly deposit a first layer material onto the sheet, removing the sheet from the second solution, suspending the sheet into a third solution to deposit a second layer of material having a lower TCE value than the first layer of material, separating the patterned disks from one another, and annealing thermally the patterned disks to decompose the decomposable polymer and creating a cavity in place of the decomposable polymer.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: August 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Patent number: 8081280
    Abstract: In a liquid crystal display device, a method for creating desirable pretilt angle by means of topography of the substrates, such as a surface that is sloped with respect to the surface of the electrodes. In combination with a low pretilt but highly photo-stable alignment layer, which may be very resistant to high levels of ultraviolet radiation, a high pretilt and photo-stable alignment structure is generated, by essentially combining two incompatible technical approaches. The ever more stringent requirements for projection displays are met. The methods for producing such sloped surfaces and the considerations related to design of the sloped surfaces are disclosed.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: December 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: George Liang-Tai Chiu, Steven Alan Cordes, James Patrick Doyle, Matthew J. Farinelli, Minhua Lu, Hiroki Nakano, Ronald Nunes, James Vichiconti
  • Publication number: 20110034047
    Abstract: A method for fabricating a negative thermal expanding system device includes coating a wafer with a thermally decomposable polymer, patterning the decomposable polymer into repeating disk patterns, releasing the decomposable polymer from the wafer and forming a sheet of repeating patterned disks, suspending the sheet into a first solution with seeding compounds for electroless decomposition, removing the sheet from the first solution, suspending the sheet into a second solution to electrolessly deposit a first layer material onto the sheet, removing the sheet from the second solution, suspending the sheet into a third solution to deposit a second layer of material having a lower TCE value than the first layer of material, separating the patterned disks from one another, and annealing thermally the patterned disks to decompose the decomposable polymer and creating a cavity in place of the decomposable polymer.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 10, 2011
    Applicant: International Business Machines Corporation
    Inventors: Gareth Geoffrey HOUGHAM, S. Jay CHEY, James Patrick DOYLE, Xiao Hu LIU, Christopher V. JAHNES, Paul Alfred LAURO, Nancy C. LaBIANCA, Michael J. ROOKS
  • Patent number: 7883919
    Abstract: A method for fabricating a negative thermal expanding system device includes coating a wafer with a thermally decomposable polymer, patterning the decomposable polymer into repeating disk patterns, releasing the decomposable polymer from the wafer and forming a sheet of repeating patterned disks, suspending the sheet into a first solution with seeding compounds for electroless decomposition, removing the sheet from the first solution, suspending the sheet into a second solution to electrolessly deposit a first layer material onto the sheet, removing the sheet from the second solution, suspending the sheet into a third solution to deposit a second layer of material having a lower TCE value than the first layer of material, separating the patterned disks from one another, and annealing thermally the patterned disks to decompose the decomposable polymer and creating a cavity in place of the decomposable polymer.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: February 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Publication number: 20090316096
    Abstract: The present invention includes a method of preparing a dry deposited liquid-crystal alignment layer using one of a mechanical mask, photo-resist, UV treatment, and ridge and fringe field methods. The present invention further provides a multi-domain, wide viewing angle liquid-crystal display, comprising: a bottom substrate; a first transparent conductive layer; a top substrate; a color filter layer; a second transparent conductive layer; a first dry deposited liquid-crystal alignment layer; a second dry deposited liquid-crystal alignment layer, the second dry deposited liquid-crystal alignment layer being spaced adjacent to and facing the first dry deposited liquid-crystal alignment layer; spacers; and a liquid-crystal material.
    Type: Application
    Filed: August 27, 2009
    Publication date: December 24, 2009
    Inventors: Alessandro Cesare Callegari, Praveen Chaudhari, James Patrick Doyle, Eileen Galligan, James Andrew Lacey, Shui-Chih Alan Lien
  • Publication number: 20090263991
    Abstract: A method for fabricating a negative thermal expanding system device includes coating a wafer with a thermally decomposable polymer, patterning the decomposable polymer into repeating disk patterns, releasing the decomposable polymer from the wafer and forming a sheet of repeating patterned disks, suspending the sheet into a first solution with seeding compounds for electroless decomposition, removing the sheet from the first solution, suspending the sheet into a second solution to electrolessly deposit a first layer material onto the sheet, removing the sheet from the second solution, suspending the sheet into a third solution to deposit a second layer of material having a lower TCE value than the first layer of material, separating the patterned disks from one another, and annealing thermally the patterned disks to decompose the decomposable polymer and creating a cavity in place of the decomposable polymer.
    Type: Application
    Filed: July 6, 2009
    Publication date: October 22, 2009
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Patent number: 7579069
    Abstract: A negative coefficient of thermal expansion particle includes a first bilayer having a first bilayer inner layer and a first bilayer outer layer, and a second bilayer having a second bilayer inner layer and a second bilayer outer layer. The first and second bilayers are joined together along perimeters of the first and second bilayer outer layers and first and second bilayer inner layers, respectively. The first bilayer inner layer and the second bilayer inner layer are made of a first material and the first bilayer outer layer and the second bilayer outer layer are made of a second material. The first material has a greater coefficient of thermal expansion than that of the second material.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: August 25, 2009
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, Xiao Hu Liu, S. Jay Chey, James Patrick Doyle, Joseph Zinter, Jr., Michael J. Rooks, Brian Richard Sundlof, Jon Alfred Casey
  • Patent number: 7556979
    Abstract: A Negative Thermal Expansion system (NTEs) device for TCE compensation or CTE compensation in elastomer composites and conductive elastomer interconnects in microelectronic packaging. One aspect of the present invention provides a method for fabricating micromachine devices that have negative thermal expansion coefficients that can be made into a composite for manipulation of the TCE of the material. These devices and composites made with these devices are in the categories of materials called “smart materials” or “responsive materials.” Another aspect of the present invention provides microdevices comprised of dual opposed bilayers of material where the two bilayers are attached to one another at the peripheral edges only, and where the bilayers themselves are at a minimum stress conditions at a reference temperature defined by the temperature at which the bilayers are formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 7, 2009
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Patent number: 7417315
    Abstract: A Negative Thermal Expansion system (NTEs) device for TCE compensation or CTE compensation in elastomer composites and conductive elastomer interconnects in microelectronic packaging. One aspect of the present invention provides a method for fabricating micromachine devices that have negative thermal expansion coefficients that can be made into a composite for manipulation of the TCE of the material. These devices and composites made with these devices are in the categories of materials called “smart materials” or “responsive materials.” Another aspect of the present invention provides microdevices comprised of dual opposed bilayers of material where the two bilayers are attached to one another at the peripheral edges only, and where the bilayers themselves are at a minimum stress conditions at a reference temperature defined by the temperature at which the bilayers are formed.
    Type: Grant
    Filed: December 5, 2002
    Date of Patent: August 26, 2008
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Patent number: 6866415
    Abstract: A scanning heat flow probe for making quantitative measurements of heat flow through a device under test is provided. In one embodiment the scanning heat flow probe includes an electric current conductor in a cantilever beam connected to a probe tip and coupled to two voltmeter leads. The probe also includes two thermocouple junctions in the cantilever beam electrically isolated from the electric current conductor and the two voltmeter leads. Heat flow is derived quantitatively using only voltage and current measurements. In other forms, the invention relates to the calibration of scanning heat flow probes through a method involving interconnected probes, and relates to the minimization of heat flow measurement uncertainty by probe structure design practices.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: March 15, 2005
    Assignee: International Business Machines Corporation
    Inventors: Steven Alan Cordes, David R. DiMilia, James Patrick Doyle, Matthew James Farinelli, Snigdha Ghoshal, Uttam Shyamalindu Ghoshal, Chandler Todd McDowell, Li Shi
  • Patent number: 6817761
    Abstract: A scanning heat flow probe for making quantitative measurements of heat flow through a device under test is provided. In one embodiment the scanning heat flow probe includes an electric current conductor in a cantilever beam connected to a probe tip and coupled to two voltmeter leads. The probe also includes two thermocouple junctions in the cantilever beam electrically isolated from the electric current conductor and the two voltmeter leads. Heat flow is derived quantitatively using only voltage and current measurements. In other forms, the invention relates to the calibration of scanning heat flow probes through a method involving interconnected probes, and relates to the minimization of heat flow measurement uncertainty by probe structure design practices.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: November 16, 2004
    Assignee: International Business Machines Corporation
    Inventors: Steven Alan Cordes, David R. DiMilia, James Patrick Doyle, Matthew James Farinelli, Snigdha Ghoshal, Uttam Shyamalindu Ghoshal, Chandler Todd McDowell, Li Shi
  • Publication number: 20040151911
    Abstract: An apparatus for depositing and aligning an amorphous film in a single step, a method of forming an aligned film on a substrate in a single step by combining the deposition and alignment of an alignment layer into a single-step using ion beam processing and an amorphous film having an aligned atomic structure prepared by a method in which an aligned film is deposited and aligned in a single step are provided. The film is deposited and aligned in a single step by bombarding a substrate with an ion beam at a designated incident angle to simultaneously (a) deposit the film onto the substrate and (b) arrange an atomic structure of the film in at least one predetermined aligned direction.
    Type: Application
    Filed: September 11, 2003
    Publication date: August 5, 2004
    Inventors: Alessandro Cesare Callegari, Praveen Chaudhari, James Patrick Doyle, Eileen Ann Galligan, Yoshimine Kato, James Andrew Lacey, Shui-Chih Alan Lien, Minhua Lu, Hiroki Nakano, Shuichi Odahara
  • Publication number: 20040110322
    Abstract: A Negative Thermal Expansion system (NTEs) device for TCE compensation or CTE compensation in elastomer composites and conductive elastomer interconnects in microelectronic packaging. One aspect of the present invention provides a method for fabricating micromachine devices that have negative thermal expansion coefficients that can be made into a composite for manipulation of the TCE of the material. These devices and composites made with these devices are in the categories of materials called “smart materials” or “responsive materials.” Another aspect of the present invention provides microdevices comprised of dual opposed bilayers of material where the two bilayers are attached to one another at the peripheral edges only, and where the bilayers themselves are at a minimum stress conditions at a reference temperature defined by the temperature at which the bilayers are formed.
    Type: Application
    Filed: December 5, 2002
    Publication date: June 10, 2004
    Applicant: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, S. Jay Chey, James Patrick Doyle, Xiao Hu Liu, Christopher V. Jahnes, Paul Alfred Lauro, Nancy C. LaBianca, Michael J. Rooks
  • Patent number: 6724449
    Abstract: A liquid crystal display device includes a first substrate, a dry alignment film deposited over the substrate, a second substrate coupled to the first substrate with the dry alignment film deposited over the second substrate therebetween and forming a cell gap, and a liquid crystal material formed in the cell gap. The dry alignment film allows for a truly vertical alignment of molecules of the liquid crystal material such that the molecules form an angle of substantially 90° relative to the substrate. The dry alignment film can be an oxide layer, a nitride layer, an oxynitride layer or a silicon layer. This dry alignment layer can be treated to form a tilted homeotropic alignment, such that the liquid crystal molecules have a pretilt angle of 0.5 to 10 degrees from a substrate normal direction.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: April 20, 2004
    Assignee: International Business Machines Corporation
    Inventors: Paul Stephen Andry, Chen Cai, Kevin Kok Chan, Praveen Chaudhari, James Patrick Doyle, Eileen Ann Galligan, Richard Allen John, James Andrew Lacey, Shui-Chih Alan Lien
  • Publication number: 20040028117
    Abstract: A scanning heat flow probe for making quantitative measurements of heat flow through a device under test is provided. In one embodiment the scanning heat flow probe includes an electric current conductor in a cantilever beam connected to a probe tip and coupled to two voltmeter leads. The probe also includes two thermocouple junctions in the cantilever beam electrically isolated from the electric current conductor and the two voltmeter leads. Heat flow is derived quantitatively using only voltage and current measurements. In other forms, the invention relates to the calibration of scanning heat flow probes through a method involving interconnected probes, and relates to the minimization of heat flow measurement uncertainty by probe structure design practices.
    Type: Application
    Filed: April 21, 2003
    Publication date: February 12, 2004
    Inventors: Steven Alan Cordes, David R. DiMilia, James Patrick Doyle, Matthew James Farinelli, Snigdha Ghoshal, Uttam Shyamalindu Ghoshal, Chandler Todd McDowell, Li Shi
  • Patent number: 6679625
    Abstract: A scanning heat flow probe for making quantitative measurements of heat flow through a device under test is provided. In one embodiment the scanning heat flow probe includes an electric current conductor in a cantilever beam connected to a probe tip and coupled to two voltmeter leads. The probe also includes two thermocouple junctions in the cantilever beam electrically isolated from the electric current conductor and the two voltmeter leads. Heat flow is derived quantitatively using only voltage and current measurements. In other forms, the invention relates to the calibration of scanning heat flow probes through a method involving interconnected probes, and relates to the minimization of heat flow measurement uncertainty by probe structure design practices.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: January 20, 2004
    Assignee: International Business Machines Corporation
    Inventors: Steven Alan Cordes, David R. DiMilia, James Patrick Doyle, Matthew James Farinelli, Snigdha Ghoshal, Uttam Shyamalindu Ghoshal, Chandler Todd McDowell, Li Shi
  • Patent number: 6652139
    Abstract: A method of fabricating a scanning heat flow probe for making quantitative measurements of heat flow through a device under test is provided. In one embodiment the scanning heat flow probe includes an electric current conductor in a cantilever beam connected to a probe tip and coupled to two voltmeter leads. The probe also includes two thermocouple junctions in the cantilever beam electrically isolated from the electric current conductor and the two voltmeter leads. Heat flow is derived quantitatively using only voltage and current measurements. The invention also relates to the calibration of scanning heat flow probes through a method involving interconnected probes, and relates to the minimization of heat flow measurement uncertainty by probe structure design practices.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: November 25, 2003
    Assignee: International Business Machines Corporation
    Inventors: Steven Alan Cordes, David R. DiMilia, James Patrick Doyle, Matthew James Farinelli, Snigdha Ghoshal, Uttam Shyamalindu Ghoshal, Chandler Todd McDowell, Li Shi
  • Patent number: 6632483
    Abstract: The present invention includes a method of forming an aligned film on a substrate. The film is deposited and aligned in a single step by a method comprising the step of bombarding a substrate with an ion beam at a designated incident angle to simultaneously (a) deposit the film onto the substrate and (b) arrange an atomic structure of the film in at least one predetermined aligned direction.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: October 14, 2003
    Assignee: International Business Machines Corporation
    Inventors: Alessandro Cesare Callegari, Praveen Chaudhari, James Patrick Doyle, Eileen Ann Galligan, Yoshimine Kato, James Andrew Lacey, Shui-Chih Alan Lien, Minhua Lu, Hiroki Nakano, Shuichi Odahara
  • Publication number: 20030169798
    Abstract: A scanning heat flow probe for making quantitative measurements of heat flow through a device under test is provided. In one embodiment the scanning heat flow probe includes an electric current conductor in a cantilever beam connected to a probe tip and coupled to two voltmeter leads. The probe also includes two thermocouple junctions in the cantilever beam electrically isolated from the electric current conductor and the two voltmeter leads. Heat flow is derived quantitatively using only voltage and current measurements. In other forms, the invention relates to the calibration of scanning heat flow probes through a method involving interconnected probes, and relates to the minimization of heat flow measurement uncertainty by probe structure design practices.
    Type: Application
    Filed: January 21, 2003
    Publication date: September 11, 2003
    Inventors: Steven Alan Cordes, David R. DiMilia, James Patrick Doyle, Matthew James Farinelli, Snigdha Ghoshal, Uttam Shyamalindu Ghoshal, Chandler Todd McDowell, Li Shi
  • Patent number: 6613602
    Abstract: A method and system for forming a thermoelement for a thermoelectric cooler is provided. In one embodiment a substrate having a plurality of pointed tips covered by a metallic layer is formed. Portions of the metallic layer are covered by an insulator and other portions of the metallic layer are exposed. Next, a patterned layer of thermoelectric material is formed by depositions extending from the exposed portions of the metallic layer in the presence of a deposition mask. Finally, a metallic layer is formed to selectively contact the patterned layer of thermoelectric material.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: September 2, 2003
    Assignee: International Business Machines Corporation
    Inventors: Emanuel Israel Cooper, Steven Alan Cordes, David R. DiMilia, Bruce Bennett Doris, James Patrick Doyle, Uttam Shyamalindu Ghoshal, Robin Altman Wanner