Patents by Inventor James Peter Long

James Peter Long has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180203264
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Application
    Filed: March 15, 2018
    Publication date: July 19, 2018
    Applicant: The Goverment of the United States of America, as represented by the Secretary of the Navy
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Publication number: 20180203263
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Application
    Filed: March 15, 2018
    Publication date: July 19, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Patent number: 9952454
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: April 24, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Publication number: 20170227797
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Application
    Filed: April 21, 2017
    Publication date: August 10, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Publication number: 20160103341
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Application
    Filed: December 17, 2015
    Publication date: April 14, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Patent number: 9274352
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: March 1, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Patent number: 9244268
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: January 26, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Patent number: 9195052
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: November 24, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Publication number: 20150063739
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Application
    Filed: October 24, 2014
    Publication date: March 5, 2015
    Applicant: Naval Research Laboratory
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Publication number: 20140294338
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Application
    Filed: June 12, 2014
    Publication date: October 2, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Patent number: 8831386
    Abstract: Protein scaffolds from tobacco mosaic virus coat protein modified to incorporate polyhistidine can bind to a metal or a dye while having improved self-assembly characteristics. The scaffold can take the form of tubes or disks, and can further be formed into dual plasmonic ring resonators. Such self-assembled structures provide useful optical properties.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: September 9, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Banahalli R. Ratna, Amy S. Blum, Carissa M. Soto, Michael A. Bruckman, Jinny Lin Liu, Ronald W. Rendell, James Peter Long, Ronald J. Tonucci
  • Publication number: 20140224989
    Abstract: Optical devices that include one or more structures fabricated from polar-dielectric materials that exhibit surface phonon polaritons (SPhPs), where the SPhPs alter the optical properties of the structure. The optical properties lent to these structures by the SPhPs are altered by introducing charge carriers directly into the structures. The carriers can be introduced into these structures, and the carrier concentration thereby controlled, through optical pumping or the application of an appropriate electrical bias.
    Type: Application
    Filed: February 7, 2014
    Publication date: August 14, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James Peter Long, Joshua D. Caldwell, Jeffrey C. Owrutsky, Orest J. Glembocki
  • Publication number: 20130181171
    Abstract: Protein scaffolds from tobacco mosaic virus coat protein modified to incorporate polyhistidine can bind to a metal or a dye while having improved self-assembly characteristics. The scaffold can take the form of tubes or disks, and can further be formed into dual plasmonic ring resonators. Such self-assembled structures provide useful optical properties.
    Type: Application
    Filed: January 12, 2012
    Publication date: July 18, 2013
    Inventors: Banahalli R. Ratna, Amy S. Blum, Carissa M. Soto, Michael A. Bruckman, Jinny Lin Liu, Ronald W. Rendell, James Peter Long, Ronald J. Tonucci
  • Publication number: 20110215705
    Abstract: A surface plasmon polariton device that may be integrated onto a single microchip is disclosed. The device employs a laser that emits polarized light across a gap into a plasmonic waveguide. Surface plasmon polaritons are thereby created in an efficient matter. The device provides a source of surface plasmon polaritons at near infrared wavelengths in an integrated package.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 8, 2011
    Inventors: James Peter Long, Chul-soo Kim, James R. Lindle, Jerry R. Meyer, Igor Vurgaftman