Patents by Inventor James R. Brichta
James R. Brichta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7055658Abstract: A self-energized disk brake assembly includes gain stabilization features for controlling the multiplication of applied force against a rotatable brake member. The brake assembly includes a first brake pad supported about a first pivot and a second brake pad supported about a second pivot. An actuator applies a force to drive the brake pads into the rotatable brake member. Frictional force between the brake pads and the rotatable brake member pulls the brake pads into further engagement generating an increase in braking force from self-energization. A position of the first and second pivots is adjustable to control the amount of braking force generated from self-energization.Type: GrantFiled: December 29, 2003Date of Patent: June 6, 2006Assignee: ArvinMeritor Technology, LLCInventors: Frederick A. Jelley, Joseph A. Kay, James R. Brichta, Dennis G. O'Reilly, Christopher S. Keeney, Jaeho Kwak, Dennis A. Kramer
-
Patent number: 7032722Abstract: A brake assembly has a caliper with a first brake pad and a second brake pad. The first brake pad is moveable relative to the caliper. A brake actuator moves the first brake pad and has a first threaded member and a second threaded member. The first threaded member has first thread characteristics for moving the brake actuator at a first speed and a first force. The second threaded member has a second thread characteristics for moving the brake actuator at a second speed and a second force. The first speed is greater than the second speed while the first force is lower than the second force.Type: GrantFiled: July 7, 2003Date of Patent: April 25, 2006Assignee: ArvinMeritor Technology, LLCInventors: Dennis A. Kramer, Frederick A. Jelley, Joseph A. Kay, James R. Brichta, Dennis G. O'Reilly, Christopher S. Keeney, Jaeho Kwak
-
Patent number: 6896108Abstract: A system for controlling the temperature of a vehicle driveline component assembly includes using forced air to cool lubricant within the assembly. As heat builds up during braking applications, for example, a controller determines when additional cooling may be needed. An air source is activated to induce air flow through at least one flow passage supported relative to the housing so that the air flowing through the passage can absorb heat from the lubricant. In one example, the air flow passage is supported within the component housing. In another example, the air flow passage is associated with a heat exchanger supported external to the component housing in a strategic location on the vehicle or the housing, for example. A pump responsible for causing the air flow preferably also causes lubricant flow in a desired manner to facilitate heat dissipation.Type: GrantFiled: April 4, 2002Date of Patent: May 24, 2005Assignee: AxleTech International IP Holdings, LLCInventors: Mark M. Schneider, Larry W. Bowman, Eric B. Ratts, Paul R. Sieber, Robert W. Hildebrand, Michael E. Johnson, James R. Brichta
-
Patent number: 6857510Abstract: A vehicle driveline component temperature control assembly utilizes compressed air or another fluid to cause air flow across an external portion of the driveline component. The airflow facilitates heat transfer or heat dissipation from within the driveline component to assist in maintaining the temperature of the component within an acceptable range. A supply of compressed air or other fluid communicates with at least one discharge device supported on an external housing of the driveline component. The discharge device includes at least one manifold having at least one opening through which the compressed air is delivered to create an airflow across the external surface of the housing. In one example, each discharge device comprises multiple, generally C-shaped manifolds that are secured in place and supported on the external surface of the housing. The inventive arrangement is particularly useful for off-highway vehicle driveline components such as axle and wet disc brake assemblies.Type: GrantFiled: April 4, 2002Date of Patent: February 22, 2005Assignee: AxleTech International IP Holdings, LLCInventors: Mark M. Schneider, Larry W. Bowman, Eric B. Ratts, Paul R. Sieber, Robert W. Hildebrand, Michael E. Johnson, James R. Brichta
-
Publication number: 20040251092Abstract: A brake system includes a rotor and a brake pad. An actuator is connected to the brake pad. The actuator includes an energy receptive material that expands when excited to move the brake pad into contact with a braking surface on the rotor. A drive unit moves the energy receptive material between a first position and a second position, where the second position is closer to the rotor than the first position. An energy source energizes the energy receptive material to expand, moving the brake pad into contact with the braking surface. A control unit controls the drive unit and the energy source.Type: ApplicationFiled: June 11, 2003Publication date: December 16, 2004Inventors: Dennis A. Kramer, Frederick A. Jelley, Joseph A. Kay, James R. Brichta, Dennis G. O'Reilly, Christopher S. Keeney, Jaeho Kwak
-
Publication number: 20030188937Abstract: A system for controlling the temperature of a vehicle drive train component utilizes coolant that is normally used to cool an engine on the vehicle. At least one flow passageway is associated with the drive train component housing. Coolant from the radiator is selectively allowed to flow through the passageway where it absorbs heat from within the drive train component. The fluid is then returned to the radiator where heat can be dissipated in a conventional manner. A suitably programmed controller preferably controls the amount of coolant fluid flow through the component and controls a fan assembly associated with the radiator to ensure appropriate cooling of the fluid to achieve desired engine cooling and drive train component cooling.Type: ApplicationFiled: April 3, 2002Publication date: October 9, 2003Inventors: Mark M. Schneider, Larry W. Bowman, Eric B. Ratts, Paul R. Sieber, Robert W. Hildebrand, Michael E. Johnson, James R. Brichta
-
Publication number: 20030188939Abstract: A hydraulic vehicle braking system includes a housing that contains a hydraulic fluid. A braking application includes using the hydraulic fluid to provide a braking force. In one example, increasing the pressure within the housing increases the braking force. One example includes a plurality of vanes that move within the hydraulic fluid. Changing an orientation of the vanes adjusts the resistance and the amount of braking force. Increased pressure and increased resistance to the movement of the vanes within the fluid causes a braking member and associated driveline components to slow down to achieve a desired deceleration of the vehicle. In one example, a fluid accumulator is associated with the housing to receive at least some of the hydraulic fluid during a braking application. The accumulator preferably is pressurized using a gas that facilitates returning the hydraulic fluid to the brake housing after a braking application has ended.Type: ApplicationFiled: April 9, 2002Publication date: October 9, 2003Inventors: Mark M. Schneider, Larry W. Bowman, Paul R. Sieber, Robert W. Hildebrand, Michael E. Johnson, James R. Brichta
-
Publication number: 20030188935Abstract: A system for controlling the temperature of a vehicle driveline component assembly includes using forced air to cool lubricant within the assembly. As heat builds up during braking applications, for example, a controller determines when additional cooling may be needed. An air source is activated to induce air flow through at least one flow passage supported relative to the housing so that the air flowing through the passage can absorb heat from the lubricant. In one example, the air flow passage is supported within the component housing. In another example, the air flow passage is associated with a heat exchanger supported external to the component housing in a strategic location on the vehicle or the housing, for example. A pump responsible for causing the air flow preferably also causes lubricant flow in a desired manner to facilitate heat dissipation.Type: ApplicationFiled: April 4, 2002Publication date: October 9, 2003Inventors: Mark M. Schneider, Larry W. Bowman, Eric B. Ratts, Paul R. Sieber, Robert W. Hildebrand, Michael E. Johnson, James R. Brichta
-
Publication number: 20030188936Abstract: A vehicle driveline component temperature control assembly utilizes compressed air or another fluid to cause air flow across an external portion of the driveline component. The airflow facilitates heat transfer or heat dissipation from within the driveline component to assist in maintaining the temperature of the component within an acceptable range. A supply of compressed air or other fluid communicates with at least one discharge device supported on an external housing of the driveline component. The discharge device includes at least one manifold having at least one opening through which the compressed air is delivered to create an airflow across the external surface of the housing. In one example, each discharge device comprises multiple, generally C-shaped manifolds that are secured in place and supported on the external surface of the housing. The inventive arrangement is particularly useful for off-highway vehicle driveline components such as axle and wet disc brake assemblies.Type: ApplicationFiled: April 4, 2002Publication date: October 9, 2003Inventors: Mark M. Schneider, Larry W. Bowman, Eric B. Ratts, Paul R. Sieber, Robert W. Hildebrand, Michael E. Johnson, James R. Brichta
-
Publication number: 20030188932Abstract: A temperature controlling assembly includes a thermoelectric device that is supported on or in a selected driveline component, such as an axle assembly or a brake assembly. The thermoelectric device preferably is controlled to operate in a first mode to remove heat from the selected component. In one example, fluid within a wet disc brake assembly is cooled using the thermoelectric device. In another mode of operation, the thermoelectric device provides heat to a selected lubricant. A controller monitors the temperature of the chosen component and causes the thermoelectric device to operate in the appropriate mode to maintain the component temperature within a desired range.Type: ApplicationFiled: April 5, 2002Publication date: October 9, 2003Inventors: Mark M. Schneider, Larry W. Bowman, Eric B. Ratts, Paul R. Sieber, Robert W. Hildebrand, Michael E. Johnson, James R. Brichta
-
Publication number: 20030188933Abstract: An axle assembly includes braking components that generate heat during braking applications. The axle assembly includes a housing defining a housing cavity and a rotating component mounted for rotation relative to the housing. A heat dissipation member is mounted along an external surface of the housing. Fluid flow cooperates with the heat dissipation member to cool axle components. The axle assembly preferably includes wet disc brakes having a brake housing defining a brake cavity in fluid communication with the housing cavity. The heat dissipation member preferably includes internal passages in communication with the housing and brake cavities. A pumping mechanism generates fluid flow through the internal passages and through the brake and housing cavities to dissipate heat generated during braking.Type: ApplicationFiled: April 5, 2002Publication date: October 9, 2003Inventors: Michael E. Johnson, Mark M. Schneider, Larry W. Bowman, Eric B. Ratts, Paul R. Sieber, Robert W. Hildebrand, James R. Brichta
-
Publication number: 20030188546Abstract: A system for cooling vehicle driveline components, such as axles or wet disc brake assemblies utilizes evaporative cooling effects of liquid applied to an exterior surface on the housing. A liquid supply is coupled with an outlet and a controller determines when cooling is needed. Liquid is applied onto the housing from the outlet as cooling is needed. One example includes a plurality of fluid collectors on a portion of the housing exterior to increase the amount of liquid maintained on the housing to increase the evaporative cooling effect.Type: ApplicationFiled: April 4, 2002Publication date: October 9, 2003Inventors: Mark M. Schneider, Larry W. Bowman, Eric B. Ratts, Paul R. Sieber, Robert W. Hildebrand, Michael E. Johnson, James R. Brichta
-
Publication number: 20030189376Abstract: A driveline assembly for a motor vehicle includes a housing containing at least a portion of a driveline component and a wet disk brake assembly. The wet disk brake assembly includes a plurality of friction disks immersed within lubricating/cooling oil contained within the housing. Actuation of the friction disks creates a braking force to slow and stop rotation of an axle and creates heat that can cause premature deterioration of the lubricating/cooling oil that in turn can cause premature failure of driveline components and brake assembly components. An electric generator driven by a driveline component is included within the housing to provide additional braking energy to reduce the braking load on the wet disk brake assembly such that the lubricating/cooling oil maintains temperatures within acceptable predetermined operational limits without a separate oil cooling system.Type: ApplicationFiled: April 4, 2002Publication date: October 9, 2003Inventors: Mark Schneider, Larry W. Bowman, Paul Raymond Sieber, Robert W. Hildebrand, Michael Everett Johnson, James R. Brichta
-
Publication number: 20030183455Abstract: A vehicle drive axle is provided that includes a housing having a longitudinal portion defining a cavity. An axle shaft is supported within the cavity for rotation about an axis. The cavity is at least partially filled with oil. A plurality of spaced apart noncontiguous projections extend from the axle shaft in a direction transverse to the rotational axis. During rotation of the axle shafts, the projections extend into the oil within the cavity and splash the oil onto the upper portion of the axle housing. Increased heat dissipation is achieved by dispersing the oil throughout the cavity, and in particular the upper portion of the axle housing, where it radiates into the surrounding environment.Type: ApplicationFiled: April 2, 2002Publication date: October 2, 2003Inventors: Mark Schneider, Larry W. Bowman, Eric B. Ratts, Paul Raymond Sieber, Robert W. Hildebrand, Michael Everett Johnson, James R. Brichta
-
Publication number: 20020108817Abstract: A drive axle assembly includes a supplemental brake force assembly that utilizes a variable viscosity fluid. The assembly includes a housing defining a cavity and a drive component mounted for rotation relative to the housing. Rotating plates are mounted for rotation with the drive component and a Theological fluid is enclosed within the housing to surround the rotating plates. A current source generates current within the fluid to vary the viscosity. At higher traveling speeds, no current is applied to the fluid so the viscosity of the fluid is low, which reduces drag against the rotating plate. However, when a braking even occurs, current is applied to the fluid to increase viscosity and generate a supplemental braking force. The assembly is preferably incorporated into a wet disc brake with a plurality of non-rotating plates positioned in an alternating dispersal between the rotating plates.Type: ApplicationFiled: April 3, 2002Publication date: August 15, 2002Inventors: Paul Ray Sieber, Mark M. Schneider, Larry W. Bowman, Robert W. Hildebrand, Michael E. Johnson, James R. Brichta, Raji S. El-Kassouf