Patents by Inventor James R. Brookeman

James R. Brookeman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7805176
    Abstract: Method and system that provides, among other things, the capability for using hyperpolarized xenon-129 as a probe to non-invasively and non-destructively characterize important properties of certain structures or materials into which hyperpolarized xenon-129 can be introduced and wherein the xenon exists in two or more chemically-shifted states that are in exchange High-resolution MR images can be generated in a fraction of a second wherein the associated signal intensities reflect material properties that characterize the gas exchange among the different states. For example, in the human or animal lung, the system and related method can exploit the differences in gas-exchange characteristics between healthy and diseased lung tissue to generate high-resolution, high signal-to-noise cross-sectional MR images that permit non-invasive regional detection of variations in lung tissue structure with a combination of spatial and temporal resolution that is unmatched by any current imaging modality.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: September 28, 2010
    Assignee: University of Virginia Patent Foundation
    Inventors: Kai Ruppert, John P. Mugler, III, James R. Brookeman
  • Patent number: 7174200
    Abstract: A system and method for using hyperpolarized noble gases together with an appropriately designed and optimized magnetic resonance imaging pulse sequence to rapidly acquire static or dynamic magnetic resonance images. The strong magnetic resonance signal from hyperpolarized gases, combined with the present magnetic resonance imaging technique, presents the opportunity for the imaging of gases with both high spatial and high temporal resolution. One potential application for such a method is the direct, dynamic visualization of gas flow, which would be extremely useful for characterizing a variety of fluid systems. In the medical field, one such system of substantial importance is the lung. The system and method provides for visualizing regional ventilatory patterns throughout the respiratory cycle with high temporal and high spatial resolution. The low sensitivity to susceptibility artifacts permits good image quality to be obtained in various orientations.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: February 6, 2007
    Assignee: University of Virginia Patent Foundation
    Inventors: Michael Salerno, John P. Mugler, III, James R. Brookeman
  • Patent number: 7164268
    Abstract: A magnetic resonance imaging “MRI” method and apparatus for lengthening the usable echo-train duration and reducing the power deposition for imaging is provided. The method explicitly considers the t1 and t2 relaxation times for the tissues of interest, and permits the desired image contrast to be incorporated into the tissue signal evolutions corresponding to the long echo train. The method provides a means to shorten image acquisition times and/or increase spatial resolution for widely-used spin-echo train magnetic resonance techniques, and enables high-field imaging within the safety guidelines established by the Food and Drug Administration for power deposition in human MRI.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: January 16, 2007
    Assignee: University of Virginia Patent Foundation
    Inventors: John P. Mugler, III, James R. Brookeman
  • Patent number: 7034533
    Abstract: A methodology, system and computer program product for designing and optimizing a rapid magnetic resonance imaging pulse sequence for creating images of a gas or gas-filled structure with substantially reduced diffusion-induced signal attenuation during the course of data acquisition compared to that for currently available magnetic resonance imaging techniques is disclosed. The methodology and system allows desirable combinations of image signal-to-noise ration, spatial resolution and temporal resolution to be achieved that were heretofore not possible. For example, magnetic resonance imaging of hyperpolarized noble gases, which recently has shown significant promise for several medical imaging applications, particularly imaging of the human lung, can be improved. Pulse sequences designed according to the subject methods permit signal levels to be achieved that are up to ten times higher than those possible with the gradient-echo methods now commonly used for hyperpolarized-gas imaging.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: April 25, 2006
    Assignee: University of Virginia Patent Foundation
    Inventors: John P. Mugler, III, James R. Brookeman
  • Publication number: 20040260173
    Abstract: A system and method for using hyperpolarized noble gases together with an appropriately designed and optimized magnetic resonance imaging pulse sequence to rapidly acquire static or dynamic magnetic resonance images. The strong magnetic resonance signal from hyperpolarized gases, combined with the present magnetic resonance imaging technique, presents the opportunity for the imaging of gases with both high spatial and high temporal resolution. One potential application for such a method is the direct, dynamic visualization of gas flow, which would be extremely useful for characterizing a variety of fluid systems. In the medical field, one such system of substantial importance is the lung. The system and method provides for visualizing regional ventilatory patterns throughout the respiratory cycle with high temporal and high spatial resolution. The low sensitivity to susceptibility artifacts permits good image quality to be obtained in various orientations.
    Type: Application
    Filed: October 14, 2003
    Publication date: December 23, 2004
    Inventors: Michael Salerno, John P. Mugler III, James R. Brookeman
  • Patent number: 6775568
    Abstract: A method and an apparatus for using hyperpolarized xenon-129 and magnetic resonance imaging or spectroscopy as a probe to non-invasively and non-destructively characterize important properties of certain structures or materials with high spatial and temporal resolution, resulting in high-resolution magnetic resonance images wherein the associated signal intensities reflect a property of interest of at least one of the compartments. Hyperpolarized xenon-129 is introduced into two compartments between which xenon-129 can be exchanged, for example, into the blood vessels of mammal organs and the tissue of said organ or into compartments within inorganic objects. Due to chemical shift and applied magnetic field strength, the hyperpolarized xenon-129 introduced into the first compartment has a different resonant frequency from the hyperpolarized xenon-129 introduced into the second compartment.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: August 10, 2004
    Assignee: University of Virginia Patent Foundation
    Inventors: John P. Mugler, III, Kai Ruppert, James R. Brookeman
  • Publication number: 20040051527
    Abstract: A magnetic resonance imaging “MRI” method and apparatus for lengthening the usable echo-train duration and reducing the power deposition for imaging is provided. The method explicitly considers the t1 and t2 relaxation times for the tissues of interest, and permits the desired image contrast to be incorporated into the tissue signal evolutions corresponding to the long echo train. The method provides a means to shorten image acquisition times and/or increase spatial resolution for widely-used spin-echo train magnetic resonance techniques, and enables high-field imaging within the safety guidelines established by the Food and Drug Administration for power deposition in human MRI.
    Type: Application
    Filed: June 19, 2003
    Publication date: March 18, 2004
    Inventors: John P Mugler III, James R. Brookeman
  • Patent number: 6630126
    Abstract: A method of screening for pulmonary embolism uses gaseous phase polarized 129Xe which is injected directly into the vasculature of a subject. The gaseous 129Xe can be delivered in a controlled manner such that the gas substantially dissolves into the vasculature proximate to the injection site. Alternatively, the gas can be injected such that it remains as a gas in the bloodstream for a period of time (such as about 8-29 seconds). The injectable formulation of polarized 129Xe gas is presented in small quantities of (preferably isotopically enriched) hyperpolarized 129Xe and can provide high-quality vasculature MRI images or NMR spectroscopic signals with clinically useful signal resolution or intensity. One method injects the polarized 129Xe as a gas into a vein and also directs another quantity of polarized gas into the subject via inhalation. In this embodiment, the perfusion uptake allows arterial signal information and the injection (venous side) allows venous signal information.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: October 7, 2003
    Assignees: Medi-Physics, Inc., University of Virginia Patent Foundation
    Inventors: Bastiaan Driehuys, Dennis Fujii, James R. Brookeman, Klaus D. Hagspiel
  • Publication number: 20020006382
    Abstract: A method of screening for pulmonary embolism uses gaseous phase polarized 129Xe which is injected directly into the vasculature of a subject. The gaseous 129Xe can be delivered in a controlled manner such that the gas substantially dissolves into the vasculature proximate to the injection site. Alternatively, the gas can be injected such that it remains as a gas in the bloodstream for a period of time (such as about 8-29 seconds). The injectable formulation of polarized 129Xe gas is presented in small quantities of (preferably isotopically enriched) hyperpolarized 129Xe and can provide high-quality vasculature MRI images or NMR spectroscopic signals with clinically useful signal resolution or intensity. One method injects the polarized 129Xe as a gas into a vein and also directs another quantity of polarized gas into the subject via inhalation. In this embodiment, the perfusion uptake allows arterial signal information and the injection (venous side) allows venous signal information.
    Type: Application
    Filed: March 12, 2001
    Publication date: January 17, 2002
    Inventors: Bastiaan Driehuys, Dennis Fujii, James R. Brookeman, Klaus D. Hagspiel
  • Publication number: 20010041834
    Abstract: A method and an apparatus for using hyperpolarized xenon-129 and magnetic resonance imaging or spectroscopy as a probe to non-invasively and non-destructively characterize important properties of certain structures or materials with high spatial and temporal resolution, resulting in high-resolution magnetic resonance images wherein the associated signal intensities reflect a property of interest of at least one of the compartments. Hyperpolarized xenon-129 is introduced into two compartments between which xenon-129 can be exchanged, for example, into the blood vessels of mammal organs and the tissue of said organ or into compartments within inorganic objects. Due to chemical shift and applied magnetic field strength, the hyperpolarized xenon-129 introduced into the first compartment has a different resonant frequency from the hyperpolarized xenon-129 introduced into the second compartment.
    Type: Application
    Filed: April 12, 2001
    Publication date: November 15, 2001
    Inventors: John P. Mugler, James R. Brookeman
  • Patent number: 5245282
    Abstract: A new three-dimensional (3D) MR imaging pulse sequence can produce over 100 high-resolution, high-contrast images in as little as 6 minutes of imaging time. Without additional imaging time, this same image data can be post-processed to yield high-resolution, high-contrast images in any arbitrary orientation. Thus, this new pulse sequence technique provides detailed yet comprehensive coverage. The method of this invention relates to a preparation-acquisition-recovery sequence cycle. The first step is magnetization preparation (MP) period. The MP period can emply a series of RF pulses, gradient field pulses, and/or time delays to encode the desired contrast properties in the form of longitudinal magnetization. A data acquisition period includes at least two repetitions of a gradient echo sequence to acquire data for a fraction of k-space. A magnetization recovery period is provided which allows T1 and T2 relaxation before the start of the next sequence cycle.
    Type: Grant
    Filed: June 28, 1991
    Date of Patent: September 14, 1993
    Assignee: University of Virginia Alumni Patents Foundation
    Inventors: John P. Mugler, III, James R. Brookeman
  • Patent number: 5003979
    Abstract: There is disclosed an image processing, pattern recognition and computer graphics system and method for the noninvasive identification and evaluation of female breast cancer including the characteristic of the boundary thereof using multidimensional Magnetic Resonance Imaging (MRI). The system and method classifies the tissue using a Fisher linear classifier followed by a refinement to show the boundary shape and whether the surface of the carcinoma is lobulated or spiculated. The results are a high information content display which aids in the diagnosis and analysis of breast cancer and to assist in any surgical or other remedial planning. The high information content display also assists in the assessment of the effectiveness of therapies showing any reduction or increase in the size of the carcinoma.
    Type: Grant
    Filed: February 21, 1989
    Date of Patent: April 2, 1991
    Assignee: University of Virginia
    Inventors: Michael B. Merickel, Ann H. Adams, James R. Brookeman
  • Patent number: 4945478
    Abstract: There is disclosed an image processing, pattern recognition and computer graphics system and method for the noninvasive identification and evaluation of atheroscelerosis using multidimensional Magnetic Resonance Imaging (MRI). Functional information, such as plaque tissue type, is combined with structure information, represented by the 3-D vessel and plaque structure, into a single composite 3-D display. The system and method is performed with the application of unsupervised pattern recognition techniques and rapid 3-D display methods appropriate to the simultaneous display of multiple data classes. The results are a high information content display which aids in the diagnosis and analysis of the atherosclerotic disease process, and permits detailed and quantitative studies to assess the effectiveness of therapies, such as drug, exercise and dietary regimens.
    Type: Grant
    Filed: November 6, 1987
    Date of Patent: July 31, 1990
    Assignee: Center for Innovative Technology
    Inventors: Michael B. Merickel, Charles S. Carman, James R. Brookeman, John P. Mugler, III, Carlos R. Ayers
  • Patent number: RE44644
    Abstract: A magnetic resonance imaging “MRI” method and apparatus for lengthening the usable echo-train duration and reducing the power deposition for imaging is provided. The method explicitly considers the t1 and t2 relaxation times for the tissues of interest, and permits the desired image contrast to be incorporated into the tissue signal evolutions corresponding to the long echo train. The method provides a means to shorten image acquisition times and/or increase spatial resolution for widely-used spin-echo train magnetic resonance techniques, and enables high-field imaging within the safety guidelines established by the Food and Drug Administration for power deposition in human MRI.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: December 17, 2013
    Assignee: University of Virginia Patent Foundation
    Inventors: John P. Mugler, III, James R. Brookeman
  • Patent number: RE45725
    Abstract: A magnetic resonance imaging “MRI” method and apparatus for lengthening the usable echo-train duration and reducing the power deposition for imaging is provided. The method explicitly considers the t1 and t2 relaxation times for the tissues of interest, and permits the desired image contrast to be incorporated into the tissue signal evolutions corresponding to the long echo train. The method provides a means to shorten image acquisition times and/or increase spatial resolution for widely-used spin-echo train magnetic resonance techniques, and enables high-field imaging within the safety guidelines established by the Food and Drug Administration for power deposition in human MRI.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: October 6, 2015
    Assignee: University of Virginia Patent Foundation
    Inventors: John P. Mugler, III, James R. Brookeman
  • Patent number: RE47178
    Abstract: A magnetic resonance imaging “MRI” method and apparatus for lengthening the usable echo-train duration and reducing the power deposition for imaging is provided. The method explicitly considers the t1 and t2 relaxation times for the tissues of interest, and permits the desired image contrast to be incorporated into the tissue signal evolutions corresponding to the long echo train. The method provides a means to shorten image acquisition times and/or increase spatial resolution for widely-used spin-echo train magnetic resonance techniques, and enables high-field imaging within the safety guidelines established by the Food and Drug Administration for power deposition in human MRI.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: December 25, 2018
    Assignee: University of Virginia Patent Foundation
    Inventors: John P. Mugler, III, James R. Brookeman
  • Patent number: RE48347
    Abstract: A magnetic resonance imaging “MRI” method and apparatus for lengthening the usable echo-train duration and reducing the power deposition for imaging is provided. The method explicitly considers the t1 and t2 relaxation times for the tissues of interest, and permits the desired image contrast to be incorporated into the tissue signal evolutions corresponding to the long echo train. The method provides a means to shorten image acquisition times and/or increase spatial resolution for widely-used spin-echo train magnetic resonance techniques, and enables high-field imaging within the safety guidelines established by the Food and Drug Administration for power deposition in human MRI.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: December 8, 2020
    Assignee: University of Virginia Patent Foundation
    Inventors: John P. Mugler, III, James R. Brookeman