Patents by Inventor James R. Butler

James R. Butler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130184508
    Abstract: Methods of forming ethylbenzene are described herein. In one embodiment, the method includes contacting dilute ethylene with benzene in the presence of an alkylation catalyst to form ethylbenzene, wherein such contact occurs in a liquid phase reaction zone and recovering ethylbenzene from the reaction zone.
    Type: Application
    Filed: March 5, 2013
    Publication date: July 18, 2013
    Applicant: FINA TECHNOLOGY, Inc.
    Inventor: James R. Butler
  • Publication number: 20130165722
    Abstract: An apparatus and method for vaporizing and transporting an alkali metal salt is shown. The apparatus has a first conduit capable of transporting an alkali metal salt solution and a second conduit in fluid communication with the first conduit, the second conduit capable of transporting steam so that the alkali metal salt is dissipated into the steam forming a solution that can be transported, such as to a remote reaction zone. The solution can be transported via a third conduit that is capable of being heated by a heat source. The method can be used to add a promoter to a dehydrogenation catalyst during a dehydrogenation reaction.
    Type: Application
    Filed: January 12, 2010
    Publication date: June 27, 2013
    Applicant: Fina Technology, Inc.
    Inventors: Joseph E. Pelati, James R. Butler, Hollie Craig
  • Patent number: 8455383
    Abstract: A method of producing an alkylaromatic by the alkylation of an aromatic with an alkylating agent, such as producing ethylbenzene by an alkylation reaction of benzene, is disclosed. The method includes using an H-beta catalyst to minimize process upsets due to alkylation catalyst deactivation and the resulting catalyst regeneration or replacement. The H-beta catalyst can be used in a preliminary alkylation reactor that is located upstream of the primary alkylation reactor. The H-beta catalyst used in a preliminary alkylation reactor can lead to the reactivation of the catalyst in the primary alkylation reactor.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: June 4, 2013
    Assignee: Fina Technology, Inc.
    Inventor: James R. Butler
  • Publication number: 20130137808
    Abstract: Disclosed is a method of making a polystyrene based nanocomposite by combining a monomer with a nanoparticle to form a mixture and subjecting the mixture to polymerization conditions to produce a polymeric composite. In an embodiment the nanoparticle has been treated with an additive prior to combining with the monomer and the additive contains a silane moiety.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: James R. Butler, David W. Knoeppel
  • Publication number: 20130131415
    Abstract: A method of producing an alkylaromatic by the alkylation of an aromatic with ethanol, such as producing ethylbenzene by an alkylation reaction of benzene, is disclosed.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 23, 2013
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: James R. Butler, Aspen Texada, William Sheets
  • Patent number: 8426661
    Abstract: Methods of forming ethylbenzene are described herein. In one embodiment, the method includes contacting dilute ethylene with benzene in the presence of an alkylation catalyst to form ethylbenzene, wherein such contact occurs in a liquid phase reaction zone and recovering ethylbenzene from the reaction zone.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: April 23, 2013
    Assignee: Fina Technology, Inc.
    Inventor: James R. Butler
  • Patent number: 8420877
    Abstract: A method of producing an alkylaromatic by the alkylation of an aromatic with an alkylating agent, such as producing ethylbenzene by an alkylation reaction of benzene, is disclosed. The method includes using an H-beta catalyst in a preliminary alkylation reactor that is located upstream of the primary alkylation reactor. The H-beta catalyst used in a preliminary alkylation reactor can be regenerated and the regenerated H-beta zeolite catalyst can have a deactivation rate that is no more than 120% of the deactivation rate of a fresh H-beta zeolite catalyst.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: April 16, 2013
    Assignee: Fina Technology, Inc.
    Inventor: James R. Butler
  • Publication number: 20120328482
    Abstract: A process for making ethylbenzene and/or styrene by reacting toluene with methane is disclosed. In one embodiment the process can include reacting toluene with methane to form a product stream comprising ethylbenzene and further processing the ethylbenzene to form styrene in an existing styrene production facility.
    Type: Application
    Filed: September 6, 2012
    Publication date: December 27, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: James R. Butler, Joseph E. Pelati
  • Publication number: 20120296133
    Abstract: A process for making ethylbenzene and/or styrene by reacting toluene with methane in one or more microreactors is disclosed. In one embodiment a method of revamping an existing styrene production facility by adding one or more microreactors capable of reacting toluene with methane to produce a product stream comprising ethylbenzene and/or styrene is disclosed.
    Type: Application
    Filed: July 25, 2012
    Publication date: November 22, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventor: James R. Butler
  • Publication number: 20120296137
    Abstract: A process for making styrene is disclosed that includes providing toluene, a co-feed, and a C1 source to a reactor containing a catalyst, reacting toluene with the C1 source in the presence of the catalyst and the co-feed to form a product stream containing ethylbenzene and styrene. The co-feed can be selected from the group of water, carbon monoxide, hydrogen, and combinations thereof.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 22, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Sivadinarayana Chinta, Joseph L. Thorman, James R. Butler
  • Publication number: 20120296132
    Abstract: A process for making styrene including reacting toluene with a C1 source in the presence of a catalyst and a co-feed including at least one oxidizing agent in a reactor to form a product stream including ethylbenzene and styrene and, optionally, at least one de-oxidized oxidizing agent.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 22, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: James R. Butler, Sivadinarayana Chinta
  • Publication number: 20120296142
    Abstract: A process for making styrene including providing toluene, a co-feed, and a C1 source to a reactor containing a catalyst having a total number of acid sites and reacting toluene with the C1 source in the presence of the catalyst and the co-feed to form a product stream containing ethylbenzene and styrene where the co-feed removes at least a portion of the total number of acid sites on the catalyst. The co-feed can be selected from the group of ammonia, primary amines, and secondary amines, and combinations thereof. The C1 source can be selected from methanol, formaldehyde, formalin, trioxane, methylformcel, paraformaldehyde, methylal, dimethyl ether, and combinations thereof.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 22, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: James R. Butler, Sivadinarayana Chinta
  • Publication number: 20120296131
    Abstract: A process for making styrene in a pre-existing facility including an infrastructure capable of producing styrene, wherein the infrastructure includes at least one dehydrogenation unit. The process includes coupling an alkylation unit including an alkylation reactor to the infrastructure and contacting toluene with a C1 source in the presence of a first catalyst and a co-feed in the alkylation reactor to form a first product stream comprising styrene and ethylbenzene. The styrene and ethylbenzene from the first product stream are routed for further processing to a portion of the pre-existing facility.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 22, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: James R. Butler, Sivadinarayana Chinta, Joseph E. Pelati
  • Publication number: 20120296139
    Abstract: A process for making styrene is disclosed that includes reacting toluene with a C1 source and a co-feed in the presence of a catalyst in a reactor to form a first product stream comprising styrene, ethylbenzene, carbon monoxide, and hydrogen; separating the hydrogen and carbon monoxide from the first product stream to form a second stream; separating the hydrogen from the second stream to form a third stream comprising hydrogen and a fourth stream comprising carbon monoxide; wherein the fourth stream is recycled to the reactor and forms at least a portion of the co-feed.
    Type: Application
    Filed: April 27, 2012
    Publication date: November 22, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Joseph E. Pelati, James R. Butler, Sivadinarayana Chinta
  • Patent number: 8314282
    Abstract: A process for making ethylbenzene and/or styrene by reacting toluene with methane is disclosed. In one embodiment the process can include reacting toluene with methane to form a product stream comprising ethylbenzene and further processing the ethylbenzene to form styrene in an existing styrene production facility.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: November 20, 2012
    Assignee: Fina Technology, Inc.
    Inventors: James R. Butler, Joseph E. Pelati
  • Publication number: 20120238789
    Abstract: A method for the production of styrene comprising reacting toluene and syngas in one or more reactors is disclosed.
    Type: Application
    Filed: June 1, 2012
    Publication date: September 20, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Joseph E. Pelati, James R. Butler
  • Patent number: 8269053
    Abstract: A process for making ethylbenzene and/or styrene by reacting toluene with methane in one or more microreactors is disclosed. In one embodiment a method of revamping an existing styrene production facility by adding one or more microreactors capable of reacting toluene with methane to produce a product stream comprising ethylbenzene and/or styrene is disclosed.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: September 18, 2012
    Assignee: Fina Technology, Inc.
    Inventor: James R. Butler
  • Publication number: 20120215045
    Abstract: Methods and apparatus of staged injection of an oxidant into a feedstream within a reactor are disclosed. The staged injection of the oxidant can better disperse the catalytic reactions throughout the catalyst bed. The staged injection of the oxidant can lower the content of carbon oxides in the reaction product stream, which can reduce energy release from the reactor.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 23, 2012
    Applicant: Fina Technology, Inc.
    Inventor: James R. Butler
  • Publication number: 20120215046
    Abstract: Disclosed is a method for aromatic conversion that includes contacting an alkene and an aromatic hydrocarbon with a nanocrystalline zeolite catalyst disposed within a reactor under alkylation conditions, wherein the nanocrystalline zeolite catalyst includes at least one zeolitic material and producing a product stream having a monoalkyl aromatic hydrocarbon.
    Type: Application
    Filed: January 18, 2012
    Publication date: August 23, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventor: James R. Butler
  • Publication number: 20120190904
    Abstract: Disclosed is a dehydrogenation method that includes supplying a feed containing a hydrocarbon and steam into a dehydrogenation reactor containing a dehydrogenation catalyst, contacting the hydrocarbon and steam with the dehydrogenation catalyst to form a dehydrogenation product, wherein the dehydrogenation product comprises a dehydrogenated hydrocarbon, unreacted feed, steam and hydrogen, passing the dehydrogenation product through a membrane separator, and permeating hydrogen through a membrane positioned in the membrane separator. The hydrocarbon can be an alkyl aromatic and the dehydrogenated hydrocarbon can be a vinyl aromatic hydrocarbon, optionally the hydrocarbon can be an alkane and the dehydrogenated hydrocarbon can be an alkene.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 26, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventor: James R. Butler