Patents by Inventor James R. Chow

James R. Chow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170146267
    Abstract: An apparatus includes a heat exchanger configured to transfer heat to a fluid and to absorb heat from the fluid as the fluid flows between a warm end and a cold end of a cryocooler. The heat exchanger includes at least one section having a substrate of at least one allotropic form of carbon and a layer of nanoparticles on or over the substrate. The heat exchanger could include multiple sections, and each section could include one of multiple substrates and one of multiple layers of nanoparticles. The heat exchanger can further include pores through the multiple sections of the heat exchanger, where the pores are configured to allow the fluid to flow through the heat exchanger and to contact the substrates and the layers of nanoparticles. The nanoparticles could include at least one lanthanide element or alloy, and the substrate could include carbon nanotubes or graphene.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventors: Theodore J. Conrad, James R. Chow, Craig A. Amiento, William E. Elias
  • Publication number: 20170108383
    Abstract: A thin-film device for generating a blackbody spectrum is disclosed. The device includes first layer configured to generate heat in response to an applied voltage and a second layer configured to generate the blackbody radiation spectrum in response to the heat from the first layer. A thermocouple is disposed between the first layer and the second layer for measuring a temperature at the second layer. The thermocouple measures temperature at the second layer in order to control temperature at the second layer. The thermocouple can be a copper-carbon nanotube thermocouple.
    Type: Application
    Filed: October 15, 2015
    Publication date: April 20, 2017
    Inventors: James R. Chow, Carl W. Townsend, Kurt S. Ketola
  • Patent number: 9488389
    Abstract: An apparatus includes a regenerator configured to transfer heat to a fluid and to absorb heat from the fluid as the fluid flows between a warm end and a cold end of a cryocooler. The regenerator includes an anisotropic thermal layer configured to reduce a flow of heat axially along the regenerator and to spread the absorbed heat radially or laterally in a plane of the anisotropic thermal layer. The anisotropic thermal layer includes at least one allotropic form of carbon. The anisotropic thermal layer could have a higher radial or lateral thermal conductivity and a lower axial thermal conductivity. The anisotropic thermal layer could include carbon nanotubes and/or graphene. The regenerator could include multiple anisotropic thermal layers that divide the regenerator into multiple segments, where the anisotropic thermal layers are configured to reduce heat transfer between adjacent segments of the regenerator.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: November 8, 2016
    Assignee: Raytheon Company
    Inventors: Theodore J. Conrad, Michael J. Ellis, Lowell A. Bellis, James R. Chow, Brian R. Schaefer, Troy T. Matsuoka
  • Patent number: 9459154
    Abstract: An apparatus, method and thin-film structure for producing a blackbody spectrum is disclosed. A first layer of the apparatus is configured to generate heat in response to an applied voltage. A second layer is configured to emit the blackbody radiation spectrum in response to the heat from the first layer. A thermal spreading layer is disposed between the first layer and the second layer. The thermal spreading layer includes a graphene sheet for reducing a spatial variation of the heat in a plane of the thermal spreading layer.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: October 4, 2016
    Assignee: RAYTHEON COMPANY
    Inventors: James R. Chow, Kurt S. Ketola, David M. La Komski, Carl W. Townsend, William E. Elias, Stuart J. Marble
  • Patent number: 9443638
    Abstract: A structure having a carbon nanotube material having a plurality of carbon nanotubes and an electrically or thermally conductive material disposed on at least a portion of the carbon nanotubes, such electrically or thermally conductive material being chemically bonded to such portion of the carbon nanotubes.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: September 13, 2016
    Assignee: Raytheon Company
    Inventors: James R. Chow, Kurt S. Ketola, Carl W. Townsend
  • Publication number: 20160059320
    Abstract: A method includes exposing a non-aqueous solution to ultraviolet illumination, where the non-aqueous solution includes one or more lanthanide elements and one or more photo-initiators. The method also includes producing lanthanide nanoparticles using the non-aqueous solution. The non-aqueous solution could be formed by mixing a first non-aqueous solution including the one or more lanthanide elements and a second non-aqueous solution including the one or more photo-initiators. The non-aqueous solution could include one or more metallic salts, where each metallic salt includes at least one lanthanide element. The one or more metallic salts could include erbium chloride, and the one or more photo-initiators could include benzophenone. The non-aqueous solution could include an organic solvent, such as an alcohol.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 3, 2016
    Inventors: William E. Elias, Theodore J. Conrad, James R. Chow
  • Publication number: 20160040830
    Abstract: A cryogenic assembly includes a platform configured to support at least one electronic component. A cryocooler is thermally connected to the platform to cool the platform to a cryogenic temperature. A vacuum unit includes a housing that surrounds a cavity configured to receive the platform. The vacuum unit is configured to thermally insulate the cavity from surrounding ambient air surrounding. At least one connector is configured to deliver an electrical signal from a power supply to the cryogenic assembly. The connector includes at least one carbon nanotube interconnect that inhibits heat flow into cryogenic assembly while delivering the electrical signal.
    Type: Application
    Filed: December 10, 2014
    Publication date: February 11, 2016
    Inventors: James R. Chow, Theodore J. Conrad, David M. La Komski
  • Patent number: 9086327
    Abstract: An apparatus and method of calibrating a sensor. A voltage is applied to a first carbon nanotube layer to obtain a first temperature of the first carbon nanotube layer. A thermally conductive layer is used to provide a substantially uniform temperature related to the first temperature of the first carbon nanotube layer by smoothing a spatial variation of the first temperature. A second carbon nanotube layer receives the substantially uniform temperature and emits a first blackbody radiation spectrum to calibrate the sensor. The apparatus may be used to emit a second black body radiation spectrum by altering the applied voltage.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: July 21, 2015
    Assignee: RAYTHEON COMPANY
    Inventors: James R. Chow, Bruce Hirano, David M. La Komski
  • Publication number: 20150192329
    Abstract: An apparatus includes a regenerator configured to transfer heat to a fluid and to absorb heat from the fluid as the fluid flows between a warm end and a cold end of a cryocooler. The regenerator includes an anisotropic thermal layer configured to reduce a flow of heat axially along the regenerator and to spread the absorbed heat radially or laterally in a plane of the anisotropic thermal layer. The anisotropic thermal layer includes at least one allotropic form of carbon. The anisotropic thermal layer could have a higher radial or lateral thermal conductivity and a lower axial thermal conductivity. The anisotropic thermal layer could include carbon nanotubes and/or graphene. The regenerator could include multiple anisotropic thermal layers that divide the regenerator into multiple segments, where the anisotropic thermal layers are configured to reduce heat transfer between adjacent segments of the regenerator.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 9, 2015
    Applicant: Raytheon Company
    Inventors: Theodore J. Conrad, Michael J. Ellis, Lowell A. Bellis, James R. Chow, Brian R. Schaefer, Troy T. Matsuoka
  • Patent number: 9074295
    Abstract: A method for etching Carbon Nanotube (CNT) sheet material for electrical circuit and thin film thermal structures. The method includes: forming an mask on a sheet of electrically conductive CNT material; and electrochemically removing unmasked portions of the CNT material.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 7, 2015
    Assignee: RAYTHEON COMPANY
    Inventors: James R. Chow, Carl W. Townsend
  • Patent number: 9072164
    Abstract: A process for fabricating a three dimensional molded feed structure is provided. In one embodiment, the invention relates to a process for fabricating a three dimensional radio frequency (RF) antenna structure, the process including providing a flexible circuit substrate, forming a first preselected pattern of channels in the flexible circuit substrate, depositing a conductive layer on the formed flexible substrate, and removing portions of the conductive layer to form a plurality of conductive traces.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: June 30, 2015
    Assignee: RAYTHEON COMPANY
    Inventors: Alberto F. Viscarra, David T. Winslow, Billy D. Ables, Kurt S. Ketola, Kurt J. Krause, Kevin C. Rolston, Rohn Sauer, James R. Chow
  • Publication number: 20150076373
    Abstract: An apparatus, method and thin-film structure for producing a blackbody spectrum is disclosed. A first layer of the apparatus is configured to generate heat in response to an applied voltage. A second layer is configured to emit the blackbody radiation spectrum in response to the heat from the first layer. A thermal spreading layer is disposed between the first layer and the second layer. The thermal spreading layer includes a graphene sheet for reducing a spatial variation of the heat in a plane of the thermal spreading layer.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 19, 2015
    Inventors: James R. Chow, Kurt S. Ketola, David M. La Komski, Carl W. Townsend, William E. Elias, Stuart J. Marble
  • Publication number: 20140339407
    Abstract: An apparatus and method of calibrating a sensor is disclosed. A voltage is applied to a first carbon nanotube layer to obtain a first temperature of the first carbon nanotube layer. A thermally conductive layer is used to provide a substantially uniform temperature related to the first temperature of the first carbon nanotube layer by smoothing a spatial variation of the first temperature. A second carbon nanotube layer receives the substantially uniform temperature and emits a first blackbody radiation spectrum to calibrate the sensor. The apparatus may be used to emit a second black body radiation spectrum by altering the applied voltage.
    Type: Application
    Filed: May 15, 2013
    Publication date: November 20, 2014
    Applicant: Raytheon Company
    Inventors: James R. Chow, Bruce Hirano, David M. La Komski
  • Publication number: 20140262821
    Abstract: A method for etching Carbon Nanotube (CNT) sheet material for electrical circuit and thin film thermal structures. The method includes: forming an mask on a sheet of electrically conductive CNT material; and electrochemically removing unmasked portions of the CNT material.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Raytheon Company
    Inventors: James R. Chow, Carl W. Townsend
  • Publication number: 20140256840
    Abstract: A structure having a carbon nanotube material having a plurality of carbon nanotubes and an electrically or thermally conductive material disposed on at least a portion of the carbon nanotubes, such electrically or thermally conductive material being chemically bonded to such portion of the carbon nanotubes.
    Type: Application
    Filed: February 27, 2014
    Publication date: September 11, 2014
    Applicant: Raytheon Company
    Inventors: James R. Chow, Kurt S. Ketola, Carl W. Townsend
  • Publication number: 20110113619
    Abstract: A process for fabricating a three dimensional molded feed structure is provided. In one embodiment, the invention relates to a process for fabricating a three dimensional radio frequency (RF) antenna structure, the process including providing a flexible circuit substrate, forming a first preselected pattern of channels in the flexible circuit substrate, depositing a conductive layer on the formed flexible substrate, and removing portions of the conductive layer to form a plurality of conductive traces.
    Type: Application
    Filed: November 17, 2009
    Publication date: May 19, 2011
    Inventors: Alberto F. Viscarra, David T. Winslow, Billy D. Ables, Kurt S. Ketola, Kurt J. Krause, Kevin C. Rolston, Rohn Sauer, James R. Chow
  • Patent number: 5667621
    Abstract: Bonding of expanded polymeric parts together to produce lost foam molds suitable for casting metallic details is accomplished by applying a non-aqueous, adhesive-free coating comprising a polar, highly dielectric component contained in a liquid vehicle to the interfacing surface of at least one of the parts to be joined. The interfacing surfaces of the parts to be joined are held in contact while the assembly is irradiated with high frequency electromagnetic energy. This energy enables the coating to dielectrically heat the mated expanded polymeric parts until a bond is effected by melting the polymeric parts and inducing expansion of the parts into one another.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: September 16, 1997
    Assignee: Hughes Aircraft Company
    Inventors: Thomas K. Dougherty, Norman H. Harris, James R. Chow
  • Patent number: 5574077
    Abstract: A microwave-absorbing material composed of blends of polar icosahedral molecular units with a variety of host matrices, or with polymers with the units covalently bonded in a pendant manner to the polymer chain. Both blends and polymers must impart a high degree of orientational mobility to the units so that they can absorb microwave radiation. These materials employ orientationally mobile, polar icosahedral molecular units as the source of dielectric loss at microwave frequencies. Examples of these units are the polar carboranes (ortho- and meta-carborane), polar carboranes with electronegative and/or electropositive substitutes, and polar "buckminsterfullerenes.
    Type: Grant
    Filed: November 30, 1993
    Date of Patent: November 12, 1996
    Inventors: Thomas K. Dougherty, Norman H. Harris, James R. Chow, Brian M. Pierce, David A. Whelan
  • Patent number: 5381149
    Abstract: An inhomogeneous broadband absorber of electromagnetic energy constructed from an aerogel-lossy dielectric composite, where the concentration of the lossy dielectric increase across its thickness such that the composite's dielectric properties vary from those of the aerogel to those of the lossy dielectric. Materials useful for serving as the lossy dielectric include polar molecules, polar icosahedral molecules, polyaniline electron-conducting polymers, and polyprrole electron-conducting polymers. Another inhomogeneous layer absorber is constructed from an aerogel that is intrinsically a lossy dielectric. The variation in dielectric properties is achieved by increasing the density of the aerogel across the thickness of the material. Aerogel materials for such an absorber include organic aerogels which have been pyrolized in an inert atmosphere to give vitreous carbon aerogels. Methods for fabricating these absorbers are described.
    Type: Grant
    Filed: April 17, 1992
    Date of Patent: January 10, 1995
    Assignee: Hughes Aircraft Company
    Inventors: Thomas K. Dougherty, Norman H. Harris, James R. Chow, Brian M. Pierce
  • Patent number: 5317058
    Abstract: A microwave-absorbing material composed of blends of polar icosahedral molecular units with a variety of host matrices, or with polymers with the units covalently bonded in a pendant manner to the polymer chain. Both blends and polymers must impart a high degree of orientational mobility to the units so that they can absorb microwave radiation. These materials employ orientationally mobile, polar icosahedral molecular units as the source of dielectric loss at microwave frequencies. Examples of these units are the polar carboranes (ortho- and meta-carborane), polar carboranes with electronegative and/or electropositive substitutes, and polar "buckminsterfullerenes.
    Type: Grant
    Filed: April 17, 1992
    Date of Patent: May 31, 1994
    Assignee: Hughes Aircraft Company
    Inventors: Thomas K. Dougherty, Norman H. Harris, James R. Chow, Brian M. Pierce, David A. Whelan