Patents by Inventor James R. Curtis

James R. Curtis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8801922
    Abstract: A dialysis system includes a filtration system capable of filtering a water stream, a water purification system capable of purifying said water stream in a non-batch process, a mixing system capable of producing a stream of dialysate from mixing one or more dialysate components with the water stream in a non-batch process, and a dialyzer system. The dialyzer may be a microfluidic dialyzer capable of being fluidly coupled to the stream of dialysate and a blood stream.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: August 12, 2014
    Assignees: State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University, Home Dialysis Plus, ltd.
    Inventors: Julie S. Wrazel, James R. Curtis, Ladislaus Nonn, Richard B. Peterson, Hailei Wang, Robbie Ingram-Goble, Luke W. Fisher, Anna E. Garrison, M. Kevin Drost, Goran Jovanovic, Richard Todd Miller, Bruce W. Johnson, Alana Warner-Tuhy, Eric K. Anderson
  • Publication number: 20140209540
    Abstract: Disclosed herein are water purification and supply systems for medical devices and methods of using. In an embodiment, the system includes A dialysis system includes a filtration system capable of filtering a water stream, a water purification system capable of purifying said water stream in a non-batch process, a mixing system capable of producing a stream of dialysate from mixing one or more dialysate components with the water stream in a non-batch process, and a dialyzer system. The dialyzer may be a microfluidic dialyzer capable of being fluidly coupled to the stream of dialysate and a blood stream.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Applicant: HOME DIALYSIS PLUS, LTD.
    Inventors: Dalibor Jan Smejtek, James R. Curtis
  • Patent number: 8753515
    Abstract: Systems and methods are disclosed for performing hemodialysis that include fluid handling systems that provide accurate control over the type and level of hemodialysis being performed. The system includes a first pump for pumping dialysate into a dialyzer and a second pump for pumping dialysate out of the dialyzer. The system also includes a third pump that provides improved control of a level of ultrafiltration, hemodiafiltration, or both.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: June 17, 2014
    Assignee: Home Dialysis Plus, Ltd.
    Inventors: James R. Curtis, Ladislaus F. Nonn, Julie Wrazel
  • Patent number: 8685251
    Abstract: Disclosed herein are water purification and supply systems for medical devices and methods of using. In an embodiment, the system includes a dialysis system including a filtration system capable of filtering a water stream, a water purification system capable of purifying the water stream in a non-batch process, a mixing system capable of producing a stream of dialysate from mixing one or more dialysate components with the water stream in a non-batch process, and a dialyzer system. The dialyzer may be a microfluidic dialyzer capable of being fluidly coupled to the stream of dialysate and a blood stream. The water purification system includes an RO filter 6122, a proportioning valve 6165, a heater 6150, first and second heat exchangers, and a throttle valve 6160.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: April 1, 2014
    Assignee: Home Dialysis Plus, Ltd.
    Inventors: Dalibor Jan Smejtek, James R. Curtis
  • Publication number: 20130327715
    Abstract: Certain disclosed embodiments concern systems and methods of preparing dialysate for use in a home dialysis system that is compact and light-weight relative to existing systems and consumes relatively low amounts of energy. The method includes coupling a household water stream to a dialysis system; filtering the water stream; heating the water stream to at least about 138 degrees Celsius in a non-batch process to produce a heated water stream; maintaining the heated water stream at or above at least about 138 degrees Celsius for at least about two seconds; cooling the heated water stream to produce a cooled water stream; ultrafiltering the cooled water stream; and mixing dialysate components into the cooled water stream in a non-batch process.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 12, 2013
    Applicant: State of Oregon acting by and through the State Board of Higher Education of Oregon State
    Inventors: Richard B. Peterson, James R. Curtis
  • Patent number: 8524086
    Abstract: Certain disclosed embodiments concern systems and methods of preparing dialysate for use in a home dialysis system that is compact and light-weight relative to existing systems and consumes relatively low amounts of energy. The method includes coupling a household water stream to a dialysis system; filtering the water stream; heating the water stream to at least about 138 degrees Celsius in a non-batch process to produce a heated water stream; maintaining the heated water stream at or above at least about 138 degrees Celsius for at least about two seconds; cooling the heated water stream to produce a cooled water stream; ultrafiltering the cooled water stream; and mixing dialysate components into the cooled water stream in a non-batch process.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: September 3, 2013
    Assignees: State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University, Home Dialysis Plus, Ltd.
    Inventors: Richard B. Peterson, James R. Curtis
  • Patent number: 8501009
    Abstract: Disclosed are systems and methods of preparing dialysate for use in a home dialysis system that is compact and light-weight relative to existing systems and consumes relatively low amounts of energy. The method includes coupling a household water stream to a dialysis system; filtering the water stream; heating the water stream to at least about 138 degrees Celsius in a non-batch process to produce a heated water stream; maintaining the heated water stream at or above at least about 138 degrees Celsius for at least about two seconds; cooling the heated water stream to produce a cooled water stream; ultrafiltering the cooled water stream; and mixing dialysate components into the cooled water stream in a non-batch process.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: August 6, 2013
    Assignees: State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University, Home Dialysis Plus, Ltd.
    Inventors: Richard B. Peterson, James R. Curtis, Hailei Wang, Robbie Ingram-Goble, Luke W. Fisher, Anna E. Garrison
  • Patent number: 8419945
    Abstract: The present invention provides methods and apparatus for cleansing blood through hemodialysis by the process of diffusion across a membrane into dialysate. This dialyzer also removes solutes from the blood by a process of convection, where fluid and dissolved solutes pass through the membrane out of the blood. In one embodiment in accordance with the present invention, the MECS dialyzer uses a counter-flow between the dialysate and blood through a plurality of microchannels. The dialyzer comprises a plurality of flat semi-permeable membranes interleaved between microchannel sheets to define a plurality of flow channels. The stack of membranes and microchannel sheets are aligned and consolidated to form the MECS dialyzer. The MECS dialyzer acts as a flow manifold with ports and headers to collect the blood and dialysate and direct them to and from the microchannels.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: April 16, 2013
    Assignees: State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University, Home Dialysis Plus
    Inventors: David M. Browning, James R. Curtis, Goran Nadezda Jovanovic, Brian Kevin Paul, Sundar Atre
  • Publication number: 20130056419
    Abstract: A medical dialysis system including a filtration system configured to filter a water stream, a water purification system configured to purify the water stream in a non-batch process, a mixing system, and a dialyzer system. The mixing system includes a supply of dialysate components, a conductivity sensor positioned within a fluid pathway through which the water stream flows, and a control mechanism having a pump configured to control an amount of the one or more dialysate components added to the water stream from the supply. The mixing system can produce a stream of dialysate from mixing the one or more dialysate components with the water stream in a non-batch process. The dialyzer system includes a dialyzer, a plurality of pumps capable of pumping the stream of dialysate across the dialyzer, and another conductivity sensor positioned downstream of the dialyzer within a fluid pathway through which the water stream flows.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 7, 2013
    Inventor: James R. Curtis
  • Publication number: 20120223015
    Abstract: The present invention provides methods and apparatus for cleansing blood through hemodialysis by the process of diffusion across a membrane into dialysate. This dialyzer also removes solutes from the blood by a process of convection, where fluid and dissolved solutes pass through the membrane out of the blood. In one embodiment in accordance with the present invention, the MECS dialyzer uses a counter-flow between the dialysate and blood through a plurality of microchannels. The dialyzer comprises a plurality of flat semi-permeable membranes interleaved between microchannel sheets to define a plurality of flow channels. The stack of membranes and microchannel sheets are aligned and consolidated to form the MECS dialyzer. The MECS dialyzer acts as a flow manifold with ports and headers to collect the blood and dialysate and direct them to and from the microchannels.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 6, 2012
    Inventors: David M. Browning, James R. Curtis, Goran Nadezda Jovanovic, Brian Kevin Paul, Sundar Atre
  • Patent number: 8230001
    Abstract: Methods and systems for providing information a client requested about a system using scripts are described. In one embodiment, one or more scripts request information about a computer system. A translator receives the information about the system from the scripts. The translator stores the information about the system in readily accessible data structures.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: July 24, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: James R. Curtis, Eric Soderberg, Morris Lee
  • Publication number: 20120138533
    Abstract: Disclosed herein are systems and methods of using such systems including a dialysis system, a dialysis system controller operatively coupled to a filtration system, water purification system, dialysate preparation system and dialyzer system of the dialysis system, and a user interface communicatively coupled to the dialysis system controller. The user interface is configured to enable user interaction with the dialysis system and guide a user step-wise through set-up and shut-down of the dialysis system according to a pre-determined protocol. The user interface communicates with the dialysis system controller to activate an alarm condition when a deviation from the pre-determined protocol is sensed.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 7, 2012
    Inventors: James R. Curtis, Michael J. Baker
  • Patent number: 8171349
    Abstract: A virtual machine is migrated from a source physical machine to a target physical machine, where the virtual machine has an executable service and a monitoring agent for monitoring the executable service. In response to the migrating, a monitoring manager is started that issues a command to start the executable service. It is determined whether the command is for the executable service that is already running in the migrated virtual machine. In response to such determining, the started monitoring manager is associated with the already running executable service, where the monitoring manager cooperates with the monitoring agent to detect fault of the executable service.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: May 1, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Richard Mark Stern, James R. Curtis
  • Patent number: 8135849
    Abstract: A computer system comprises a server that serves a plurality of clients and performs client authentication and authorization during client login to the server using file system permissions specified for domain sockets. The server creates a domain socket file for individual users during initialization which sets permissions enabling user access to the domain socket file, monitors file descriptors for received connection requests from client processes, and either opens a requesting client process with permission-enabled user access or denies access to an unauthorized client process.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: March 13, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: James R Curtis
  • Patent number: 8128822
    Abstract: The present invention is related to hemodialysis, and more particularly, to a dialyser with improved efficiency of mass transfer across a dialysis membrane utilizing microchannel separation provided in accordance with embodiments of the present invention. In accordance with an embodiment, a dialyzer is provided comprising a plurality of semipermeable membrane sheets and a plurality of flow separators. The membrane sheets and flow are arranged in alternating configuration and coupled into a laminae stack defining a plurality of parallel microchannel layers. Each microchannel layer comprises a plurality of first microchannels and a plurality of second microchannels. The first and second microchannels of each microchannel layer are in fluid communication with each other via one of the plurality of membrane sheets therebetween. The MECS dialyzer is characterized as having a high surface to volume ratio and a high mass transfer coefficient.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: March 6, 2012
    Assignees: State of Oregon acting by and through The State Board of Higher Education on behalf of Oregon State University, Home Dialysis Plus
    Inventors: David M. Browning, James R. Curtis, Goran Nadezda Jovanovic, Brian Kevin Paul, Sundar Atre
  • Publication number: 20110314345
    Abstract: A virtual machine is migrated from a source physical machine to a target physical machine, where the virtual machine has an executable service and a monitoring agent for monitoring the executable service. In response to the migrating, a monitoring manager is started that issues a command to start the executable service. It is determined whether the command is for the executable service that is already running in the migrated virtual machine. In response to such determining, the started monitoring manager is associated with the already running executable service, where the monitoring manager cooperates with the monitoring agent to detect fault of the executable service.
    Type: Application
    Filed: June 18, 2010
    Publication date: December 22, 2011
    Inventors: Richard Mark Stern, James R. Curtis
  • Publication number: 20110300231
    Abstract: Certain disclosed embodiments concern systems and methods of preparing dialysate for use in a home dialysis system that is compact and light-weight relative to existing systems and consumes relatively low amounts of energy. The method includes coupling a household water stream to a dialysis system; filtering the water stream; heating the water stream to at least about 138 degrees Celsius in a non-batch process to produce a heated water stream; maintaining the heated water stream at or above at least about 138 degrees Celsius for at least about two seconds; cooling the heated water stream to produce a cooled water stream; ultrafiltering the cooled water stream; and mixing dialysate components into the cooled water stream in a non-batch process.
    Type: Application
    Filed: May 2, 2011
    Publication date: December 8, 2011
    Inventors: Richard B. Peterson, James R. Curtis
  • Publication number: 20110300230
    Abstract: Disclosed are systems and methods of preparing dialysate for use in a home dialysis system that is compact and light-weight relative to existing systems and consumes relatively low amounts of energy. The method includes coupling a household water stream to a dialysis system; filtering the water stream; heating the water stream to at least about 138 degrees Celsius in a non-batch process to produce a heated water stream; maintaining the heated water stream at or above at least about 138 degrees Celsius for at least about two seconds; cooling the heated water stream to produce a cooled water stream; ultrafiltering the cooled water stream; and mixing dialysate components into the cooled water stream in a non-batch process.
    Type: Application
    Filed: June 7, 2010
    Publication date: December 8, 2011
    Inventors: Richard B. Peterson, James R. Curtis, Hailei Wang, Robbie Ingram-Goble, Luke W. Fisher, Anna E. Garrison
  • Patent number: 8067892
    Abstract: A method is provided for forming a corona-producing emitter electrode by depositing substantially pure silicon carbide by CVD and forming a corona-producing emitter electrode with the deposited silicon carbide. In addition, a method of forming a corona-producing gas ionizer is provided by providing a corona electrode formed from CVD silicon carbide, electrically coupling the corona electrode to a high voltage power supply, and providing an AC or DC voltage from the high voltage power supply to the corona electrode. Furthermore, a method of ionizing gas in an environment is provided by providing a corona-producing ionizer emitter electrode formed substantially of CVD silicon carbide, electrically coupling the electrode to a high voltage power supply, and providing an AC or DC voltage from the high voltage power supply to the electrode.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: November 29, 2011
    Assignee: Illinois Tool Works Inc.
    Inventors: James R. Curtis, John A. Gorczyca
  • Publication number: 20110192796
    Abstract: Disclosed herein are water purification and supply systems for medical devices and methods of using. In an embodiment, the system includes A dialysis system includes a filtration system capable of filtering a water stream, a water purification system capable of purifying said water stream in a non-batch process, a mixing system capable of producing a stream of dialysate from mixing one or more dialysate components with the water stream in a non-batch process, and a dialyzer system. The dialyzer may be a microfluidic dialyzer capable of being fluidly coupled to the stream of dialysate and a blood stream.
    Type: Application
    Filed: December 3, 2010
    Publication date: August 11, 2011
    Inventors: Dalibor Jan Smejtek, James R. Curtis