Patents by Inventor James R. Eshleman

James R. Eshleman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200232033
    Abstract: The present invention provides methods for analyzing blocks of closely spaced SNPs, or haplotypes for use in identification of the origin of DNA in a sample. The methods comprise aligning common alleles of a gene of interest and identifying a region containing a plurality of SNPs which is flanked by non-polymorphic DNA which can be used for primer placement. Any sequencing method, including next generation sequencing methods can then be used to determine the haplotypes in the sample with a lower limit of detection of at least 0.01%. These inventive methods are useful, for example, for identification of hematopoietic stem cell transplantation patients destined to relapse, microchimerism associated with solid organ transplantation, detection of solid organ transplant rejection by detecting donor DNA in recipient plasma, forensic applications, and patient identification.
    Type: Application
    Filed: August 28, 2019
    Publication date: July 23, 2020
    Inventors: James R. Eshleman, Sarah J. Wheelan, Jonathan Pevsner
  • Publication number: 20170218447
    Abstract: The present invention provides methods for analyzing blocks of closely spaced SNPs, or haplotypes for use in identification of the origin of DNA in a sample. The methods comprise aligning common alleles of a gene of interest and identifying a region containing a plurality of SNPs which is flanked by non-polymorphic DNA which can be used for primer placement. Any sequencing method, including next generation sequencing methods can then be used to determine the haplotypes in the sample with a lower limit of detection of at least 0.01%. These inventive methods are useful, for example, for identification of hematopoietic stem cell transplantation patients destined to relapse, microchimerism associated with solid organ transplantation, detection of solid organ transplant rejection by detecting donor DNA in recipient plasma, forensic applications, and patient identification.
    Type: Application
    Filed: August 5, 2015
    Publication date: August 3, 2017
    Inventors: James R. Eshleman, Sarah J. Wheelan, Jonathan Pevsner
  • Patent number: 9315868
    Abstract: The present invention provides a method for detecting mutations in the PALB2 gene in pancreatic cancer patients and in individuals having a family history of pancreatic cancer. Methods are also provided for diagnosing a predisposition to pancreatic cancer, for predicting a patient's response to pancreatic cancer therapies, and for treating pancreatic cancer, based on presence of a PALB2 mutation or abberant PALB2 gene expression in a patient.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: April 19, 2016
    Assignee: The Johns Hopkins University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Sian Jones, Scott Kern, Ralph Hruban, James R. Eshleman, Michael Goggins, Alison Klein, Manuel Hidalgo, Victor E. Velculescu
  • Publication number: 20160032406
    Abstract: The present invention provides a method for detecting mutations in the PALB2 gene in pancreatic cancer patients and in individuals having a family history of pancreatic cancer. Methods are also provided for diagnosing a predisposition to pancreatic cancer, for predicting a patient's response to pancreatic cancer therapies, and for treating pancreatic cancer, based on presence of a PALB2 mutation or abberant PALB2 gene expression in a patient.
    Type: Application
    Filed: August 7, 2015
    Publication date: February 4, 2016
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Sian Jones, Scott Kern, Ralph Hruban, James R. Eshleman, Michael Goggins, Alison Klein, Manuel Hidalgo, Victor Velculescu
  • Patent number: 9115403
    Abstract: The present invention provides a method for detecting mutations in the PALB2 gene in pancreatic cancer patients and in individuals having a family history of pancreatic cancer. Methods are also provided for diagnosing a predisposition to pancreatic cancer, for predicting a patient's response to pancreatic cancer therapies, and for treating pancreatic cancer, based on presence of a PALB2 mutation or abberant PALB2 gene expression in a patient.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: August 25, 2015
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Sian Jones, Scott Kern, Ralph Hruban, James R. Eshleman, Michael Goggins, Alison Klein, Manuel Hidalgo, Victor E. Velculescu
  • Patent number: 8679788
    Abstract: The invention provides methods permitting the detection of small amounts of different nucleic acids in the presence of an excess amount of wild-type nucleic acids. Also provided herein are method so detecting infectious disease minority variants, methods of forensic identification, methods of diagnosing cancer and monitoring disease progress.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: March 25, 2014
    Assignee: The Johns Hopkins University
    Inventors: James R. Eshleman, Chanjuan Shi, Susan Henrietta Eshleman
  • Publication number: 20120135521
    Abstract: An oligonucleotide based therapeutic strategy, called anti-gene locks, is described which specifically kills cells based on their genotype. The strategy employs oligonucleotides with arms and a backbone that are complementary to both strands of the gene target. Anti-gene locks bind in vitro in a sequence dependent fashion and inhibit DNA synthesis. In bacterial cells containing an episome target, they cause elimination of the extra-chromosomal DNA structure. When the target is present in the bacterial or human genome, they selectively kill the majority of these cells.
    Type: Application
    Filed: September 28, 2011
    Publication date: May 31, 2012
    Inventors: James R. Eshleman, Antony R. Parker
  • Publication number: 20120115735
    Abstract: There are currently few therapeutic options for patients with pancreatic cancers and new insights into the pathogenesis of this lethal disease are urgently needed. To this end, we performed a comprehensive analysis of the genes altered in 24 pancreatic tumors. First, we determined the sequences of 23,781 transcripts, representing 20,583 protein-encoding genes, in DNA from these tumors. Second, we searched for homozygous deletions and amplifications using microarrays querying ˜one million single nucleotide polymorphisms in each sample. Third, we analyzed the transcriptomes of the same samples using SAGE and next-generation sequencing-by-synthesis technologies. We found that pancreatic cancers contain an average of 63 genetic alterations, of which 49 are point mutations, 8 are homozygous deletions, and 6 are amplifications. Further analyses revealed a core set of 12 regulatory processes or pathways that were each genetically altered in 70% to 100% of the samples.
    Type: Application
    Filed: September 3, 2009
    Publication date: May 10, 2012
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Sian Jones, Xiaosong Zhang, Jimmy Cheng-Ho Lin, Rebecca J. Leary, Philipp Angenendt, Nickolas Papadopoulos, Victor Velculescu, Giovanni Parmigiani, Rachel Karchin, Scott Kern, Ralph Hruban, James R. Eshleman, Michael Goggins, Alison Klein
  • Publication number: 20120034318
    Abstract: The present invention provides a method for detecting mutations in the PALB2 gene in pancreatic cancer patients and in individuals having a family history of pancreatic cancer. Methods are also provided for diagnosing a predisposition to pancreatic cancer, for predicting a patient's response to pancreatic cancer therapies, and for treating pancreatic cancer, based on presence of a PALB2 mutation or abberant PALB2 gene expression in a patient.
    Type: Application
    Filed: March 5, 2010
    Publication date: February 9, 2012
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, D. Williams Parsons, Sian Jones, Scott Kern, Ralph Hruban, James R. Eshleman, Michael Goggins, Alison Klein, Manuel Hidalgo, Victor E. Velculescu
  • Publication number: 20030219770
    Abstract: Methods for the simultaneous sequencing of multiple nucleic acid molecules are provided. Preferred methods include simultaneous single-direction sequencing of multiple genes or forward and reverse sequencing from a single gene, within a single reaction vessel. Additional methods of the invention include combined amplification and sequencing of nucleic acids, from a variety of sources, within a single reaction and wherein nucleic acid products also can be simultaneously analyzed, and where the reaction can be either bidirectional or long unidirectional. Additional methods encompass combined amplification and sequencing of multiple nucleic acid molecules simultaneously.
    Type: Application
    Filed: November 8, 2002
    Publication date: November 27, 2003
    Inventors: James R. Eshleman, Kathleen M. Murphy