Patents by Inventor James R. Handley

James R. Handley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12055345
    Abstract: An air separation unit and associated method for separating air by cryogenic distillation using a distillation column system including a higher pressure column, a lower pressure column, an intermediate pressure kettle column, and an argon column arrangement is provided. The disclosed air separation unit and method is particularly suited for production of an argon product as well as several nitrogen products wherein a portion of the nitrogen overhead intermediate pressure kettle column is taken as an intermediate or elevated pressure nitrogen product. The present air separation unit and associated method employs a once-through kettle column reboiler, a once-through kettle column condenser while the argon condenser condenses an argon-rich vapor stream against a pumped oxygen stream from the bottom of the lower pressure column.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: August 6, 2024
    Assignee: Praxair Technology, Inc.
    Inventors: Neil M. Prosser, James R. Handley
  • Publication number: 20240035744
    Abstract: An air separation unit and associated method for separating air by cryogenic distillation using a distillation column system including a higher pressure column, a lower pressure column, an intermediate pressure kettle column, and an argon column arrangement is provided. The disclosed air separation unit and method is particularly suited for production of an argon product as well as several nitrogen products wherein a portion of the nitrogen overhead intermediate pressure kettle column is taken as an intermediate or elevated pressure nitrogen product. The present air separation unit and associated method employs a once-through kettle column reboiler, a once-through kettle column condenser while the argon condenser condenses an argon-rich vapor stream against a pumped oxygen stream from the bottom of the lower pressure column.
    Type: Application
    Filed: July 28, 2022
    Publication date: February 1, 2024
    Inventors: Neil M. Prosser, James R. Handley
  • Publication number: 20230221069
    Abstract: A nitrogen liquefier configured to be integrated with an argon and nitrogen producing cryogenic air separation unit and method of nitrogen liquefaction are provided. The integrated nitrogen liquefier and associated methods may be operated in at least three distinct modes including: (i) a nil liquid nitrogen mode; (ii) a low liquid nitrogen mode; and (iii) a high liquid nitrogen mode. The present systems and methods are further characterized in an oxygen enriched stream from the lower pressure column of the air separation unit is an oxygen enriched condensing medium used in the argon condenser.
    Type: Application
    Filed: March 8, 2023
    Publication date: July 13, 2023
    Inventors: Brian R. Kromer, Neil M. Prosser, Jeremy M. Cabral, James R. Handley
  • Patent number: 11629913
    Abstract: A nitrogen liquefier configured to be integrated with an argon and nitrogen producing cryogenic air separation unit and method of nitrogen liquefaction are provided. The integrated nitrogen liquefier and associated methods may be operated in at least three distinct modes including: (i) a nil liquid nitrogen mode; (ii) a low liquid nitrogen mode; and (iii) a high liquid nitrogen mode. The present systems and methods are further characterized in an oxygen enriched stream from the lower pressure column of the air separation unit is an oxygen enriched condensing medium used in the argon condenser.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: April 18, 2023
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Brian R. Kromer, Neil M. Prosser, Jeremy M. Cabral, James R. Handley
  • Patent number: 11619442
    Abstract: A system and method of regenerating a pre-purification vessel is provided that is particularly suitable for pre-purification of a feed air stream in cryogenic air separation unit that uses an oxygen-enriched purge gas stream for regeneration of the pre-purification unit. The disclosed pre-purification systems and methods are configured to remove substantially all of the water, carbon dioxide and other impurities from a feed air stream, optionally including hydrogen and carbon monoxide impurities. The method of regenerating a pre-purification vessel preferably involves regenerating the pre-purification vessel with an oxygen-enriched purge gas after depressurization of the vessel and thereafter partially repressurizing the pre-purification vessel with an auxiliary purge gas thereby diluting the oxygen concentration of the gases contained in the pre-purification vessel and optionally depressurizing the partially repressurized vessel.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: April 4, 2023
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: James R. Handley, Richard C. Cyganovich, Cem E. Celik, Brian S. Powell, Devang Ashok Dasani
  • Publication number: 20230055084
    Abstract: A nitrogen liquefier configured to be integrated with an argon and nitrogen producing cryogenic air separation unit and method of nitrogen liquefaction are provided. The integrated nitrogen liquefier and associated methods may be operated in at least three distinct modes including: (i) a nil liquid nitrogen mode; (ii) a low liquid nitrogen mode; and (iii) a high liquid nitrogen mode. The present systems and methods are further characterized in an oxygen enriched stream from the lower pressure column of the air separation unit is an oxygen enriched condensing medium used in the argon condenser.
    Type: Application
    Filed: October 7, 2022
    Publication date: February 23, 2023
    Inventors: Brian R. Kromer, Neil M. Prosser, Jeremy M. Cabral, James R. Handley
  • Publication number: 20220404094
    Abstract: Various systems and methods for suppling cryogenic refrigeration to supercomputing applications such as quantum computing operations are provided. The disclosed systems and methods are flexible, efficient and scaleable to meet the cryogenic refrigeration requirements of many supercomputing applications. The disclosed systems and methods include: (i) a liquid nitrogen based integrated refrigeration system that integrates a nitrogen refrigerator with a refrigeration load circuit; (ii) a closed loop liquid nitrogen based refrigerator that provides cooling to the refrigeration load circuit via indirect heat exchange between liquid nitrogen in a nitrogen refrigerator and a separate refrigerant in a closed-loop refrigeration load circuit; and (iii) a liquid air based integrated refrigeration system that integrates an air intake system with a refrigerator and a refrigeration load circuit.
    Type: Application
    Filed: December 1, 2020
    Publication date: December 22, 2022
    Inventors: Neil M. Prosser, James R. Handley, Ricardo Dutra de Castro Costa, John F. Billingham, David R. Parsnick
  • Publication number: 20220333860
    Abstract: A system and method of regenerating a pre-purification vessel is provided that is particularly suitable for pre-purification of a feed air stream in cryogenic air separation unit that uses an oxygen-enriched purge gas stream for regeneration of the pre-purification unit. The disclosed pre-purification systems and methods are configured to remove substantially all of the water, carbon dioxide and other impurities from a feed air stream, optionally including hydrogen and carbon monoxide impurities. The method of regenerating a pre-purification vessel preferably involves regenerating the pre-purification vessel with an oxygen-enriched purge gas after depressurization of the vessel and thereafter partially repressurizing the pre-purification vessel with an auxiliary purge gas thereby diluting the oxygen concentration of the gases contained in the pre-purification vessel and optionally depressurizing the partially repressurized vessel.
    Type: Application
    Filed: April 19, 2021
    Publication date: October 20, 2022
    Inventors: James R. Handley, Richard C. Cyganovich, Cem E. Celik, Brian S. Powell, Devang Ashok Dasani
  • Patent number: 11402151
    Abstract: The present invention relates to a method and system for producing liquefied natural gas (LNG) from a stream of pressurized natural gas which involves a combination of mechanical refrigeration.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: August 2, 2022
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Nick J Degenstein, James R Handley, Mohammad Abdul-Aziz Rashad
  • Publication number: 20210372698
    Abstract: Enhancements to a dual column, nitrogen producing cryogenic air separation unit with waste expansion are provided. Such enhancements include an improved air separation cycle that uses: (i) three condenser-reboilers; (ii) a reverse reflux stream from the condenser-reboiler associated with the lower pressure column to the higher pressure column; and (iii) a recycle stream of a portion of the vapor from one or more of the condenser-reboilers that is recycled back to the incoming feed stream and or the compressed purified air streams to yield improvements in the performance of such dual column, nitrogen producing cryogenic air separation units in terms of overall nitrogen recovery as well as power consumption compared to conventional dual column, nitrogen producing cryogenic air separation units employing waste expansion.
    Type: Application
    Filed: April 29, 2021
    Publication date: December 2, 2021
    Inventors: Zhengrong Xu, Neil M. Prosser, James R. Handley, John F. Billingham
  • Publication number: 20210356205
    Abstract: Enhancements to the distillation column system and cycles for an argon and nitrogen producing cryogenic air separation unit are provided. The enhancements include systems and methods for: (i) recovery of xenon and krypton; (ii) production of oxygen product substantially free of hydrocarbons; and (iii) improvement in the design and performance of the super-stage argon column. The present systems and methods are further characterized in an oxygen enriched stream from the lower pressure column of the air separation unit is an oxygen enriched condensing medium used in the argon condenser.
    Type: Application
    Filed: April 14, 2021
    Publication date: November 18, 2021
    Inventors: Brian R. Kromer, Neil M. Prosser, James R. Handley, Zhengrong Xu, Henry E. Howard
  • Publication number: 20210356206
    Abstract: A nitrogen liquefier configured to be integrated with an argon and nitrogen producing cryogenic air separation unit and method of nitrogen liquefaction are provided. The integrated nitrogen liquefier and associated methods may be operated in at least three distinct modes including: (i) a nil liquid nitrogen mode; (ii) a low liquid nitrogen mode; and (iii) a high liquid nitrogen mode. The present systems and methods are further characterized in an oxygen enriched stream from the lower pressure column of the air separation unit is an oxygen enriched condensing medium used in the argon condenser.
    Type: Application
    Filed: April 27, 2021
    Publication date: November 18, 2021
    Inventors: Brian R. Kromer, Neil M. Prosser, Jeremy M. Cabral, James R. Handley
  • Publication number: 20210348838
    Abstract: Liquefier arrangements configured for co-production of both liquid natural gas (LNG) and liquid nitrogen (LIN) configured to operate using direct drive motor/generator arrangement for the warm and/or cold booster compressors and turbines. Alternatively, the use of a conventional generator with a bull gear in lieu of the direct drive motor/generator arrangement on the warm turbine and warm booster compressor coupling is also disclosed.
    Type: Application
    Filed: December 14, 2020
    Publication date: November 11, 2021
    Inventors: Neil M. Prosser, Jeremiah J. Rauch, James R. Handley, Nathaniel J. Parr
  • Patent number: 10969168
    Abstract: A moderate pressure air separation unit and air separation cycle is disclosed that provides for up to about 96% recovery of argon, an overall nitrogen recovery of 98 percent or greater and limited gaseous oxygen production. The air separation is configured to produce a first high purity oxygen enriched stream and a second lower purity oxygen enriched stream from the lower pressure column, one of which is used as the refrigerant to condense the argon in the argon condenser, with the resulting vaporized oxygen stream used to regenerate the temperature swing adsorption pre-purifier unit. All or a portion of the first high purity oxygen enriched stream is vaporized in the main heat exchanger to produce the gaseous oxygen products.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: April 6, 2021
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Brian R. Kromer, James R. Handley, Neil M. Prosser
  • Patent number: 10816263
    Abstract: A moderate pressure air separation unit and air separation cycle is disclosed that provides for up to about 96% recovery of argon and an overall nitrogen recovery of 98% or greater. The air separation is configured to produce a high purity oxygen enriched stream which is used as the refrigerant to condense the argon in the argon condenser, with the resulting vaporized oxygen stream used to regenerate the temperature swing adsorption prepurifier unit. Argon recovery is facilitated with the use of an argon superstaged column.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: October 27, 2020
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Neil M. Prosser, James R. Handley, Brian R. Kromer
  • Patent number: 10663223
    Abstract: A moderate pressure air separation unit and air separation cycle is disclosed that provides for up to about 96% recovery of argon, an overall nitrogen recovery of 98% or greater and limited gaseous oxygen production. The air separation is configured to produce a first high purity oxygen enriched stream and a second lower purity oxygen enriched stream from the lower pressure column, one of which is used as the refrigerant to condense the argon in the argon condenser, with the resulting vaporized oxygen stream used to regenerate the temperature swing adsorption pre-purifier unit. All or a portion of the first high purity oxygen enriched stream is vaporized in the main heat exchanger to produce the gaseous oxygen products.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: May 26, 2020
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: James R. Handley, Neil M. Prosser, Brian R. Kromer
  • Patent number: 10663224
    Abstract: A moderate pressure air separation unit and air separation cycle is disclosed that provides for up to about 96% recovery of argon, an overall nitrogen recovery of 98 percent or greater and limited gaseous oxygen production. The air separation is configured to produce a first high purity oxygen enriched stream and a second lower purity oxygen enriched stream from the lower pressure column, one of which is used as the refrigerant to condense the argon in the argon condenser, with the resulting vaporized oxygen stream used to regenerate the temperature swing adsorption pre-purifier unit. All or a portion of the first high purity oxygen enriched stream is vaporized in the main heat exchanger to produce the gaseous oxygen products.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: May 26, 2020
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Neil M. Prosser, Brian R. Kromer, James R. Handley
  • Patent number: 10663222
    Abstract: A moderate pressure air separation unit and air separation cycle is disclosed that provides for up to about 96% recovery of argon, an overall nitrogen recovery of 98 percent or greater and limited gaseous oxygen production. The air separation is configured to produce a first high purity oxygen enriched stream and a second lower purity oxygen enriched stream from the lower pressure column, one of which is used as the refrigerant to condense the argon in the argon condenser, with the resulting vaporized oxygen stream used to regenerate the temperature swing adsorption pre-purifier unit. All or a portion of the first high purity oxygen enriched stream is vaporized in the main heat exchanger to produce the gaseous oxygen products.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: May 26, 2020
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Brian R. Kromer, James R. Handley, Neil M. Prosser
  • Publication number: 20200149806
    Abstract: A moderate pressure air separation unit and air separation cycle is disclosed that provides for up to about 96% recovery of argon, an overall nitrogen recovery of 98 percent or greater and limited gaseous oxygen production. The air separation is configured to produce a first high purity oxygen enriched stream and a second lower purity oxygen enriched stream from the lower pressure column, one of which is used as the refrigerant to condense the argon in the argon condenser, with the resulting vaporized oxygen stream used to regenerate the temperature swing adsorption pre-purifier unit. All or a portion of the first high purity oxygen enriched stream is vaporized in the main heat exchanger to produce the gaseous oxygen products.
    Type: Application
    Filed: January 15, 2020
    Publication date: May 14, 2020
    Inventors: Neil M. Prosser, Brian R. Kromer, James R. Handley
  • Publication number: 20200149807
    Abstract: A moderate pressure air separation unit and air separation cycle is disclosed that provides for up to about 96% recovery of argon, an overall nitrogen recovery of 98 percent or greater and limited gaseous oxygen production. The air separation is configured to produce a first high purity oxygen enriched stream and a second lower purity oxygen enriched stream from the lower pressure column, one of which is used as the refrigerant to condense the argon in the argon condenser, with the resulting vaporized oxygen stream used to regenerate the temperature swing adsorption pre-purifier unit. All or a portion of the first high purity oxygen enriched stream is vaporized in the main heat exchanger to produce the gaseous oxygen products.
    Type: Application
    Filed: January 15, 2020
    Publication date: May 14, 2020
    Inventors: Brian R. Kromer, James R. Handley, Neil M. Prosser