Patents by Inventor James R. Hoch

James R. Hoch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230397941
    Abstract: A method for controlling an output of an energy module of a modular energy system. The energy module can comprise a plurality of amplifiers configured to generate a drive signal at a frequency range and a plurality of ports coupled to the plurality of amplifiers. The method includes determining to which port of the plurality of ports the surgical instrument is connected, selectively coupling an amplifier of the plurality of amplifiers to the port of the plurality of ports to which the surgical instrument is connected, and controlling the amplifier to deliver the drive signal for driving the energy modality to the surgical instrument through the port.
    Type: Application
    Filed: April 5, 2023
    Publication date: December 14, 2023
    Inventors: Joshua M. Henderson, Joshua P. Morgan, Eitan T. Wiener, John E. Hein, James R. Hoch, Gregory J. Bakos
  • Publication number: 20230346446
    Abstract: A method for constructing a modular surgical system is disclosed. The method comprises providing a header module comprising a first power backplane segment, providing a surgical module comprising a second power backplane segment, assembling the header module and the surgical module to electrically couple the first power backplane segment and the second power backplane segment to each other to form a power backplane, and applying power to the surgical module through the power backplane.
    Type: Application
    Filed: April 5, 2023
    Publication date: November 2, 2023
    Inventors: Joshua M. Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon, Ryan M. Asher, John B. Schulte, John E. Hein, James R. Hoch, Gregory J. Bakos
  • Patent number: 11678925
    Abstract: A method for controlling an output of an energy module of a modular energy system. The energy module can comprise a plurality of amplifiers configured to generate a drive signal at a frequency range and a plurality of ports coupled to the plurality of amplifiers. The method includes determining to which port of the plurality of ports the surgical instrument is connected, selectively coupling an amplifier of the plurality of amplifiers to the port of the plurality of ports to which the surgical instrument is connected, and controlling the amplifier to deliver the drive signal for driving the energy modality to the surgical instrument through the port.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: June 20, 2023
    Assignee: Cilag GmbH International
    Inventors: Joshua Henderson, Joshua P. Morgan, Eitan T. Wiener, John E. Hein, James R. Hoch, Gregory J. Bakos
  • Patent number: 11666368
    Abstract: A method for constructing a modular surgical system is disclosed. The method comprises providing a header module comprising a first power backplane segment, providing a surgical module comprising a second power backplane segment, assembling the header module and the surgical module to electrically couple the first power backplane segment and the second power backplane segment to each other to form a power backplane, and applying power to the surgical module through the power backplane.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: June 6, 2023
    Assignee: Cilag GmbH International
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon, Ryan M. Asher, John B. Schulte, John E. Hein, James R. Hoch, Gregory J. Bakos
  • Publication number: 20200100830
    Abstract: A method for constructing a modular surgical system is disclosed. The method comprises providing a header module comprising a first power backplane segment, providing a surgical module comprising a second power backplane segment, assembling the header module and the surgical module to electrically couple the first power backplane segment and the second power backplane segment to each other to form a power backplane, and applying power to the surgical module through the power backplane.
    Type: Application
    Filed: September 5, 2019
    Publication date: April 2, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, James M. Vachon, Ryan M. Asher, John B. Schulte, John E. Hein, James R. Hoch, Gregory J. Bakos
  • Publication number: 20200078117
    Abstract: An energy module connectable to a surgical instrument is disclosed. The energy module can include a circuit, which can include a first amplifier and a second amplifier coupled to a port of the energy module to which a surgical instrument is connectable. The first amplifier can be configured to generate a first drive signal at a first frequency range and the second amplifier can be configured to generate a second drive signal at a second frequency range. The circuit can be configured to control the amplifiers to deliver the first drive signal, the second drive signal, and/or a combination of the first and second drive signals to a surgical instrument connected to the port.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Andrew W. Carroll, Jeffrey L. Aldridge, Eitan T. Wiener, Ryan M. Asher, John B. Schulte, John E. Hein, James R. Hoch
  • Publication number: 20200078080
    Abstract: An energy module for driving electrosurgical and/or ultrasonic surgical instruments is disclosed. The energy module can include an amplifier assembly that is configured to drive a variety of different energy modalities for one or more surgical instruments connected thereto. The energy module can further include a relay assembly for selectively coupling one or more of the amplifiers to different ports to which the surgical instruments are connectable. The amplifier assembly can include amplifiers for driving ultrasonic, bipolar, and/or monopolar energy.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Eitan T. Wiener, Ryan M. Asher, Brendan J. Oberkircher, John B. Schulte, John E. Hein, James R. Hoch
  • Publication number: 20200078076
    Abstract: A method for controlling an output of an energy module of a modular energy system. The energy module can comprise a plurality of amplifiers configured to generate a drive signal at a frequency range and a plurality of ports coupled to the plurality of amplifiers. The method includes determining to which port of the plurality of ports the surgical instrument is connected, selectively coupling an amplifier of the plurality of amplifiers to the port of the plurality of ports to which the surgical instrument is connected, and controlling the amplifier to deliver the drive signal for driving the energy modality to the surgical instrument through the port.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Joshua Henderson, Joshua P. Morgan, Eitan T. Wiener, John E. Hein, James R. Hoch, Gregory J. Bakos