Patents by Inventor James R. Lattner

James R. Lattner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210130711
    Abstract: Processes and systems for upgrading a hydrocarbon feed. The process can include feeding a hydrocarbon feed, catalyst particles, and molecular hydrogen (H2) into a separation zone. The hydrocarbon feed and H2 can be contacted in the presence of the catalyst particles under hydrotreating conditions in the separation zone that can include contacting under a total pressure of less than 3,500 kilopascals-gauge. The H2 can be fed into the separation zone at a rate of no greater than 270 cubic meters of H2 per cubic meter of the hydrocarbon feed, where the volume of H2 and hydrocarbon feed are based on a temperature of 25 C and a pressure of 101 kilopascals-absolute. A vapor phase hydrocarbon stream and a liquid phase hydrocarbon stream can be obtained from the separation zone. At least a portion of the vapor phase hydrocarbon stream can be fed into a pyrolysis reaction zone to produce a pyrolysis effluent.
    Type: Application
    Filed: September 24, 2020
    Publication date: May 6, 2021
    Inventors: Ramanathan Sundararaman, James R. Lattner, Michael W. Weber, David T. Ferrughelli, Saurabh S. Maduskar, Federico Barrai, Jeevan S. Abichandani
  • Publication number: 20210009486
    Abstract: The present disclosure provides assemblies for producing linear alpha olefins and methods for producing linear alpha olefins. In at least one embodiment, a method for producing a linear alpha olefin includes oligomerizing an olefin in the presence of a catalyst and a process solvent in at least one reactor, quenching the reactor effluent, and subjecting the quenched effluent to separation steps to obtain a stream enriched in one or more linear alpha olefins.
    Type: Application
    Filed: December 4, 2018
    Publication date: January 14, 2021
    Inventors: Paul W. Allen, Kirk C. Nadler, James R. Lattner, Michael W. Weber, Travis A. Reine, Robert M. Koros, Roger N. Bennett
  • Publication number: 20210002186
    Abstract: A process for endothermic dehydrogenation including contacting a catalyst material in a moving bed reactor having at least one reaction zone, the moving bed reactor comprising a heat exchanger containing a heating medium, wherein the catalyst material and the heating medium do not contact one another, and wherein at least 50% of the delta enthalpy of the at least one reaction zone is provided by the heat exchanger; and contacting a feedstock comprising hydrocarbons with the catalyst material in the at least one reaction zone of the moving bed reactor under reaction conditions to convert at least a portion of the hydrocarbons to a first effluent comprising a product comprising alkenes, alkynes, cyclic hydrocarbons, and/or aromatics.
    Type: Application
    Filed: March 1, 2019
    Publication date: January 7, 2021
    Inventors: Larry L. Iaccino, John S. Coleman, James R. Lattner
  • Patent number: 10870610
    Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating isooctane to produce neopentane. The isooctane may be provided by the alkylation of isobutane with butylenes.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: December 22, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kun Wang, Lorenzo C. DeCaul, Steven W. Levine, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir
  • Publication number: 20200377808
    Abstract: A hydrocarbon conversion process comprises pyrolysing at a temperature ?700° C. a feedstock comprising hydrocarbon to produce a pyrolysis effluent comprising at least one C2 to C4 olefin and C5+ aliphatic and aromatic hydrocarbons. The pyrolysis effluent is contacted with an oleaginous quench stream to reduce the temperature of the pyrolysis effluent to ?400° C. At least first and second streams are separated from the cooled effluent. The first stream comprises at least one C2 to C4 olefin, and the second stream comprises a quench oil having an average boiling point at atmospheric pressure of at least 120° C. At least a portion of the second stream is catalytically hydroprocessed to produce a hydroprocessed stream, which is combined with at least a portion of any remainder of the second stream to form the quench stream.
    Type: Application
    Filed: February 7, 2019
    Publication date: December 3, 2020
    Inventors: Christopher M. Evans, James R. Lattner
  • Publication number: 20200369580
    Abstract: Processes are described for isomerizing one or more C14-C24 alpha olefins to produce an isomerization mixture comprising one or more C14-C24 internal olefins comprising contacting an olefinic feed comprising the one or more C14-C24 alpha olefins with a catalyst under isomerization conditions, wherein the catalyst comprises a microporous crystalline aluminosilicate having an MWW framework. The resulting isomerization mixture typically exhibits a low pour point with maintained biodegradability properties as compared to the olefinic feed, and is particularly useful in drilling fluid and paper sizing compositions.
    Type: Application
    Filed: December 4, 2018
    Publication date: November 26, 2020
    Inventors: Ronald Raymond Hill, JR., Renyuan Yu, Elizabeth G. Mahoney, Anatoly I. Kramer, Wenyih F. Lai, Paul F. Keusenkothen, Nan Hu, Andrew P. Broenen, James R. Lattner
  • Patent number: 10836965
    Abstract: Methods of transforming a hydrocarbon feedstream into an aromatization product in a multi-stage reverse flow reactor (RFR) apparatus are disclosed. The methods include at least two reaction stages in series, at least one being a pyrolysis stage and at least another being a catalytic aromatization stage. Using a highly saturated hydrocarbon feedstream the pyrolysis stage focuses on desaturation, while the catalytic aromatization stage focuses on aromatization. The catalytic aromatization stage contains a aromatization catalyst that can include substantially no magnesium, scandium, yttrium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, rhenium, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper, silver, gold, gallium, indium, tin, lanthanides, or actinides, or, in some cases, substantially no added active metals at all.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: November 17, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mayank Shekhar, James R. Lattner, Federico Barrai, Brian M. Weiss, Dhaval A. Bhandari, Joshua W. Allen
  • Patent number: 10738259
    Abstract: This disclosure relates to naphthalene-1,8-dicarboxylate ester compounds, lubricating oil base stocks comprising naphthalene-1,8-dicarboxylate ester compounds, lubricating oil compositions comprising such base stocks, and method of making such base stocks. The lubricating oil base stocks comprising naphthalene-1,8-dicarboxylate ester compounds exhibit desirable lubricating properties such as polarity.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: August 11, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Abhimanyu O. Patil, Hong Cheng, Stephen T. Cohn, James R. Lattner
  • Patent number: 10669488
    Abstract: The invention relates to hydrocarbon pyrolysis, to equipment and materials useful for hydrocarbon pyrolysis, to processes for carrying out hydrocarbon pyrolysis, and to the use of hydrocarbon pyrolysis for, e.g., hydrocarbon upgrading.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: June 2, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Federico Barrai, James R. Lattner, Frank Hershkowitz, Elizabeth G. Mahoney
  • Patent number: 10654770
    Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating diisobutylene to produce neopentane. The diisobutylene may be provided by the dimerization of isobutylene.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: May 19, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kun Wang, Lorenzo C. DeCaul, James R. Lattner
  • Patent number: 10626064
    Abstract: Processes for producing neopentane are disclosed herein. Processes comprise demethylating a C6-C8 alkane within a shell and tube reactor to produce a demethylation product including at least 10 wt % neopentane based on the weight of the demethylation product.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: April 21, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Etienne Mazoyer, Kevin B. Daly, Helge Jaensch, James R. Lattner
  • Publication number: 20200062673
    Abstract: The present disclosure provides assemblies for producing linear alpha olefins and methods for producing linear alpha olefins. In at least one embodiment, a method for producing a linear alpha olefin includes providing an olefin, a catalyst, and a process solvent to a reactor under oligomerization conditions; obtaining an effluent produced in the reactor; transferring the effluent through an effluent line; and providing a quench agent to the effluent line via a quench agent line coupled with the effluent line. In at least one embodiment, an assembly for producing linear alpha olefins includes a configuration to provide olefin, catalyst and process solvent coupled with a reactor; an effluent line coupled with the reactor at a first end and coupled with a mixer or a flash drum at a second end; and a quench agent line coupled with the effluent line at a first end.
    Type: Application
    Filed: March 23, 2018
    Publication date: February 27, 2020
    Inventors: Michael W. Weber, Kirk C. Nadler, James R. Lattner, Travis A. Reine
  • Publication number: 20200062672
    Abstract: The present disclosure provides assemblies for producing linear alpha olefins and methods for producing linear alpha olefins. In at least one embodiment, a method for forming a linear alpha olefin, includes providing an olefin, a catalyst, and a process solvent to a reactor; obtaining an effluent from the reactor; and transferring the effluent to a distillation tower comprising a dividing wall. In at least one embodiment, an assembly for producing linear alpha olefins includes a distillation tower comprising a dividing wall having a height that is from 25% to 95% of the height of the distillation tower. In at least one embodiment, a method for forming a linear alpha olefin comprises providing an olefin, a catalyst, and orthoxylene to a tubular reactor; obtaining an effluent from the tubular reactor; and transferring the effluent to a distillation tower.
    Type: Application
    Filed: March 23, 2018
    Publication date: February 27, 2020
    Inventors: Michael W. Weber, James R. Lattner, Kirk C. Nadler, Pierre J. Osterrieth
  • Patent number: 10570084
    Abstract: A diester of a fused ring compound of the formula (I): wherein: the fused rings are both aromatic; R1 and R4 to R6 substituents are H or ester moieties having C1 to C20 linear or branched alkyl chains; R2 and R3 are —C(O)OCxHy, wherein x is from 10 to 12 and y is from 21 to 25; two adjacent R1 to R4 substituents are —C(O)OCxHy, wherein x is from 10 to 12 and y is from 21 to 25; and when R3 and R4 are ester moieties, the alkyl chains of R4 are not C5 or C8; and polymer compositions containing the fused ring compound.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: February 25, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stephen T. Cohn, Christopher M. Evans, Christine A. Costello, James R. Lattner
  • Publication number: 20200055800
    Abstract: The present disclosure provides assemblies for producing linear alpha olefins and methods for producing linear alpha olefins. In at least one embodiment, a method for producing a linear alpha olefin includes providing an olefin, a catalyst, and a process solvent to a reactor under oligomerization conditions; obtaining an effluent produced in the reactor; and transferring the effluent to a solvent-containing portion of a flash drum via a first effluent line coupled with the flash drum. In at least one embodiment, an assembly for producing linear alpha olefins includes a configuration to provide olefin, catalyst and process solvent coupled with a reactor; a flash drum; a first effluent line coupled with the reactor at a first end and coupled with the flash drum at a second end; and a second effluent line coupled with the flash drum at a first end and coupled with the first effluent line at a second end.
    Type: Application
    Filed: March 23, 2018
    Publication date: February 20, 2020
    Inventors: Michael W. Weber, James R. Lattner, Kirk C. Nadler
  • Publication number: 20200055799
    Abstract: The present disclosure provides assemblies for producing linear alpha olefins and methods for producing linear alpha olefins. In at least one embodiment, a method for producing a linear alpha olefin includes providing an olefin, a catalyst, and a process solvent to a first tubular reactor; obtaining an effluent from the first tubular reactor; and transferring the effluent to a second tubular reactor. In at least one embodiment, an assembly for producing linear alpha olefins includes a first tubular reactor having a first end and a second end; an effluent line having a first end and a second end, the first end coupled with the second end of the first tubular reactor; and a second tubular reactor having a first end and a second end, the first end coupled with the second end of the effluent line.
    Type: Application
    Filed: March 23, 2018
    Publication date: February 20, 2020
    Inventors: Kirk C. Nadler, James R. Lattner, Michael W. Weber, Travis A. Reine
  • Publication number: 20200048163
    Abstract: The invention relates to hydrocarbon pyrolysis, to equipment and materials useful for hydrocarbon pyrolysis, to processes for carrying out hydrocarbon pyrolysis, and to the use of hydrocarbon pyrolysis for, e.g., hydrocarbon upgrading.
    Type: Application
    Filed: October 18, 2019
    Publication date: February 13, 2020
    Inventors: Federico Barrai, James R. Lattner, Frank Hershkowitz, Elizabeth G. Mahoney
  • Patent number: 10550341
    Abstract: Methods are provided for producing lubricant base stocks from deasphalted oils formed by sequential deasphalting. The deasphalted oil can be exposed a first deasphalting process using a first solvent that can provide a lower severity of deasphalting and a second deasphalting process using a second solvent that can provide a higher severity of deasphalting. This can result in formation of at least a deasphalted oil and a resin fraction. The resin fraction can represent a fraction that traditionally would have been included as part of a deasphalter rock fraction.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: February 4, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mohsen N. Harandi, Doron Levin, Himanshu Gupta, James R. Lattner, Glenn C. Wood, Keith K. Aldous, Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl
  • Publication number: 20190367429
    Abstract: Processes for producing neopentane are disclosed herein. Processes comprise demethylating a C6-C8 alkane within a shell and tube reactor to produce a demethylation product including at least 10 wt % neopentane based on the weight of the demethylation product.
    Type: Application
    Filed: April 22, 2019
    Publication date: December 5, 2019
    Inventors: Etienne Mazoyer, Kevin B. Daly, Helge Jaensch, James R. Lattner
  • Patent number: 10487023
    Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating neohexane and/or neoheptane to produce neopentane. The neohexane and/or neoheptane may be provided by the isomerization of C6-C7 paraffins.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: November 26, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kun Wang, Lorenzo C. DeCaul, Michele L. Paccagnini, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir