Patents by Inventor James R. Markham
James R. Markham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240341702Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.Type: ApplicationFiled: April 15, 2024Publication date: October 17, 2024Inventors: Eric P. RUBENSTEIN, Peter R. SOLOMON, Gordon A. DRUKIER, Marek A. WÓJTOWICZ, Joseph E. COSGROVE, Michael A. SERIO, James R. MARKHAM, Kenneth W. WANG, William M. PRAMENKO
-
Patent number: 11969273Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.Type: GrantFiled: December 29, 2022Date of Patent: April 30, 2024Assignee: IMAGE INSIGHT, INC.Inventors: Eric P. Rubenstein, Peter R. Solomon, Gordon A. Drukier, Marek A. Wojtowicz, Joseph E. Cosgrove, Michael A. Serio, James R. Markham, Kenneth W. Wang, William M. Pramenko
-
Publication number: 20230218244Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.Type: ApplicationFiled: December 29, 2022Publication date: July 13, 2023Inventors: Eric P. RUBENSTEIN, Peter R. SOLOMON, Gordon A. DRUKIER, Marek A. WOJTOWICZ, Joseph E. COSGROVE, Michael A. SERIO, James R. MARKHAM, Kenneth W. WANG, William M. PRAMENKO
-
Patent number: 11540787Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.Type: GrantFiled: July 13, 2020Date of Patent: January 3, 2023Assignee: IMAGE INSIGHT, INC.Inventors: Eric P. Rubenstein, Peter R. Solomon, Gordon A. Drukier, Marek A. Wojtowicz, Joseph E. Cosgrove, Michael A. Serio, James R. Markham, Kenneth W. Wang, William M. Pramenko
-
Publication number: 20210128083Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.Type: ApplicationFiled: July 13, 2020Publication date: May 6, 2021Inventors: Eric P. RUBENSTEIN, Peter R. SOLOMON, Gordon A. DRUKIER, Marek A. WOJTOWICZ, Joseph E. COSGROVE, Michael A. SERIO, James R. MARKHAM, Kenneth W. WANG, William M. PRAMENKO
-
Patent number: 10751008Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.Type: GrantFiled: May 6, 2019Date of Patent: August 25, 2020Assignee: IMAGE INSIGHT, INC.Inventors: Eric P. Rubenstein, Peter R. Solomon, Gordon A. Drukier, Marek A. Wojtowicz, Joseph E. Cosgrove, Michael A. Serio, James R. Markham, Kenneth W. Wang, William M. Pramenko
-
Publication number: 20190328342Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.Type: ApplicationFiled: May 6, 2019Publication date: October 31, 2019Inventors: Eric P. RUBENSTEIN, Peter R. SOLOMON, Gordon A. DRUKIER, Marek A. WOJTOWICZ, Joseph E. COSGROVE, Michael A. SERIO, James R. MARKHAM, Kenneth W. WANG, William M. PRAMENKO
-
Patent number: 10278656Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.Type: GrantFiled: May 9, 2017Date of Patent: May 7, 2019Assignee: IMAGE INSIGHT, INC.Inventors: Eric P. Rubenstein, Peter R. Solomon, Gordon A. Drukier, Marek A. Wojtowicz, Joseph E. Cosgrove, Michael A. Serio, James R. Markham, Kenneth W. Wang, William M. Pramenko
-
Publication number: 20170319155Abstract: A medical imaging system for detecting ionizing radiation. The system includes one or more pixilated imagers positioned to acquire patient image data and one or more position sensors positioned to acquire patient position data. Once the patient image data and patient position data are acquired, one or more processors operably connected to each of the one or more pixilated imagers and one or more position sensors calculate a three-dimensional mass distribution based on patient image data and patient position data.Type: ApplicationFiled: May 9, 2017Publication date: November 9, 2017Inventors: Eric P. RUBENSTEIN, Peter R. SOLOMON, Gordon A. DRUKIER, Marek A. WOJTOWICZ, Joseph E. COSGROVE, Michael A. SERIO, James R. MARKHAM, Kenneth W. WANG, William M. PRAMENKO
-
Patent number: 7151260Abstract: Stand-alone multiple gas analysis apparatus, of relatively small physical size, integrates one or more supplemental sensors, such as a self-heating, amperometric, limiting current-type oxygen sensor and/or a titania nanotube-type hydrogen sensor, into the sampling cell gas flow components of an FT-IR gas analyzer. The apparatus enables simultaneous quantitative concentration measurements of infrared-active gases and of infrared-inactive atomic species and homonuclear diatomic molecules, such as of oxygen and hydrogen.Type: GrantFiled: February 27, 2004Date of Patent: December 19, 2006Assignee: Advanced Fuel Research, Inc.Inventors: James R. Markham, Peter J. Bonzani, Jr.
-
Publication number: 20040227087Abstract: Stand-alone multiple gas analysis apparatus, of relatively small physical size, integrates one or more supplemental sensors, such as a self-heating, amperometric, limiting current-type oxygen sensor and/or a titania nanotube-type hydrogen sensor, into the sampling cell gas flow components of an FT-IR gas analyzer. The apparatus enables simultaneous quantitative concentration measurements of infrared-active gases and of infrared-inactive atomic species and homonuclear diatomic molecules, such as of oxygen and hydrogen.Type: ApplicationFiled: February 27, 2004Publication date: November 18, 2004Inventors: James R. Markham, Peter J. Bonzani
-
Publication number: 20040179575Abstract: An on-engine radiation thermometer that simultaneously measures, through a common optical waveguide probe, long wavelength infrared radiation and short wavelength radiation, enables accurate temperature measurement and condition monitoring of ceramic thermal barrier coatings used on metal blades of gas turbine engines. This in turn enables operation at higher combustion temperatures, thereby optimizing coating use, and provides warning signals that are indicative of potential blade failure due to barrier coating spall and other conditions.Type: ApplicationFiled: January 12, 2004Publication date: September 16, 2004Inventor: James R. Markham
-
Patent number: 6364524Abstract: The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 &mgr;m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized.Type: GrantFiled: April 9, 1999Date of Patent: April 2, 2002Assignee: Advanced Fuel Research, IncInventor: James R. Markham
-
Patent number: 5239488Abstract: The apparatus and method permit simultaneous and precise determination of the temperature and spectral emittance, over a wide spectral region, of a hot sample. Radiance, and hemispherical reflectance and transmittance measurements are employed, and FT-IR technology is advantageously applied. Reflectance and (where necessary) transmittance measurements are utilized to determine the fraction of incident radiation, of selected wavelength, that is absorbed by the sample, in turn establishing a spectral emittance value. Taken with the measured radiance at the same wavelength, the spectral emittance value will provide a quantity that can be matched with the spectral radiance of a theoretical black body, again at the selected wavelength, to thereby derive the temperature of the hot sample; this in turn enables determination of the spectral emittance of the sample over a desired spectral range.Type: GrantFiled: April 23, 1990Date of Patent: August 24, 1993Assignee: On-Line Technologies, Inc.Inventors: James R. Markham, Philip W. Morrison, Jr., Peter R. Solomon, Philip E. Best