Patents by Inventor James R. Prager

James R. Prager has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200162061
    Abstract: A nanosecond pulser is disclosed. In some embodiments, the nanosecond pulser may include one or more switch circuits including one or more solid state switches, a transformer, and an output. In some embodiments, the transformer may include a first transformer core, a first primary winding wound at least partially around a portion of the first transformer core, and a secondary winding wound at least partially around a portion of the first transformer core. In some embodiments, each of the one or more switch circuits are coupled with at least a portion of the first primary winding. In some embodiments, the output may be electrically coupled with the secondary winding and outputs electrical pulses having a peak voltage greater than about 1 kilovolt and a rise time of less than 150 nanoseconds or less than 50 nanoseconds.
    Type: Application
    Filed: June 28, 2019
    Publication date: May 21, 2020
    Inventors: James R. Prager, Timothy M. Ziemba, Kenneth E. Miller, John G. Carscadden, Ilia Slobodov
  • Publication number: 20200161091
    Abstract: A high voltage switch comprising: a high voltage power supply providing power greater than about 5 kV; a control voltage power source; a plurality of switch modules arranged in series with respect to each other each of the plurality of switch modules configured to switch power from the high voltage power supply, and an output configured to output a pulsed output signal having a voltage greater than the rating of any switch of the plurality of switch modules, a pulse width less than 2 ?s, and at a pulse frequency greater than 10 kHz.
    Type: Application
    Filed: November 20, 2019
    Publication date: May 21, 2020
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Patent number: 10607814
    Abstract: A high voltage switch comprising: a high voltage power supply providing power greater than about 5 kV; a control voltage power source; a plurality of switch modules arranged in series with respect to each other each of the plurality of switch modules configured to switch power from the high voltage power supply, and an output configured to output a pulsed output signal having a voltage greater than the rating of any switch of the plurality of switch modules, a pulse width less than 2 ?s, and at a pulse frequency greater than 10 kHz.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: March 31, 2020
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Publication number: 20200051786
    Abstract: A high voltage switch comprising: a high voltage power supply providing power greater than about 5 kV; a control voltage power source; a plurality of switch modules arranged in series with respect to each other each of the plurality of switch modules configured to switch power from the high voltage power supply, and an output configured to output a pulsed output signal having a voltage greater than the rating of any switch of the plurality of switch modules, a pulse width less than 2 ?s, and at a pulse frequency greater than 10 kHz.
    Type: Application
    Filed: November 1, 2018
    Publication date: February 13, 2020
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Publication number: 20200043702
    Abstract: Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
    Type: Application
    Filed: October 11, 2019
    Publication date: February 6, 2020
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Patent number: 10483089
    Abstract: Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: November 19, 2019
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Patent number: 10460910
    Abstract: Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: October 29, 2019
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Patent number: 10460911
    Abstract: Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: October 29, 2019
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Publication number: 20190295769
    Abstract: A high-voltage transformer is disclosed. The high-voltage transformer includes a transformer core; at least one primary winding wound once or less than once around the transformer core; a secondary winding wound around the transformer core a plurality of times; an input electrically coupled with the primary windings; and an output electrically coupled with the secondary windings that provides a voltage greater than 1,1200 volts. In some embodiments, the high-voltage transformer has a stray inductance of less than 30 nH as measured on the primary side and the transformer has a stray capacitance of less than 100 pF as measured on the secondary side.
    Type: Application
    Filed: June 8, 2019
    Publication date: September 26, 2019
    Inventors: James R. Prager, Timothy M. Ziemba, Kenneth E. Miller, John G. Carscadden, Ilia Slobodov
  • Publication number: 20190277804
    Abstract: Some embodiments of the invention may include an eddy current nondestructive evaluation device. The eddy current nondestructive evaluation device may include a rotating body; a motor coupled with the rotating body such that the motor rotates the rotating body; a permanent magnet coupled with the rotating body; a pickup coil coupled with the rotating body; and an integrator circuit electrically coupled with the pickup coil that integrates a voltage from the pickup coil to produce integrated voltage data.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 12, 2019
    Inventors: James R. Prager, Timothy M. Ziemba, Kenneth E. Miller, Iia Slobodov, Paul Melnik, Connor Liston, Kevin Muggli, TaiSheng Yeager, John G. Carscadden
  • Patent number: 10382022
    Abstract: A nanosecond pulser is disclosed. In some embodiments, the nanosecond pulser may include one or more switch circuits including one or more solid state switches, a transformer, and an output. In some embodiments, the transformer may include a first transformer core, a first primary winding wound at least partially around a portion of the first transformer core, and a secondary winding wound at least partially around a portion of the first transformer core. In some embodiments, each of the one or more switch circuits are coupled with at least a portion of the first primary winding. In some embodiments, the output may be electrically coupled with the secondary winding and outputs electrical pulses having a peak voltage greater than about 1 kilovolt and a rise time of less than 150 nanoseconds or less than 50 nanoseconds.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: August 13, 2019
    Assignee: EAGLE HARBOR TECHNOLOGIES, INC.
    Inventors: James R. Prager, Timothy M. Ziemba, Kenneth E. Miller, John G. Carscadden, Ilia Slobodov
  • Patent number: 10373755
    Abstract: A high-voltage transformer is disclosed. The high-voltage transformer includes a transformer core; at least one primary winding wound once or less than once around the transformer core; a secondary winding wound around the transformer core a plurality of times; an input electrically coupled with the primary windings; and an output electrically coupled with the secondary windings that provides a voltage greater than 1,1200 volts. In some embodiments, the high-voltage transformer has a stray inductance of less than 30 nH as measured on the primary side and the transformer has a stray capacitance of less than 100 pF as measured on the secondary side.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: August 6, 2019
    Assignee: EAGLE HARBOR TECHNOLOGIES, INC.
    Inventors: James R. Prager, Timothy M. Ziemba, Kenneth E. Miller, John G. Carscadden, Ilia Slobodov
  • Patent number: 10320373
    Abstract: Some embodiments include a high voltage nonlinear transmission line comprising a high voltage input configured to receive electrical pulses having a first peak voltage that is greater than 10 kV; a plurality of circuit elements electrically coupled with ground, each of the plurality of circuit elements includes a nonlinear semiconductor junction capacitance device; a plurality of inductors, at least one of the plurality of inductors is electrically coupled between two circuit elements of the plurality of circuit elements; and a high voltage output providing a high voltage output signal that oscillates at a frequency greater than 100 MHz about a voltage greater than 10 kV.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: June 11, 2019
    Assignee: EAGLE HARBOR TECHNOLOGIES, INC.
    Inventors: James R. Prager, Timothy M. Ziemba, Kenneth E. Miller
  • Patent number: 10304661
    Abstract: Some embodiments include a high voltage waveform generator comprising: a generator inductor; a high voltage nanosecond pulser having one or more solid state switches electrically and/or inductively coupled with the generator inductor, the high voltage nanosecond pulser configured to produce a pulse burst having a burst period, the pulse burst comprising a plurality of pulses having different pulse widths; and a load electrically and/or inductively coupled with the high voltage nanosecond pulser, the generator inductor, and the generator capacitor, the voltage across the load having an output pulse with a pulse width substantially equal to the burst period and the voltage across the load varying in a manner that is substantially proportional with the pulse widths of the plurality of pulses.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: May 28, 2019
    Assignee: EAGLE HARBOR TECHNOLOGIES, INC.
    Inventors: Timothy M Ziemba, Kenneth E Miller, John G Carscadden, James R Prager, Ilia Slobodov
  • Publication number: 20190157044
    Abstract: Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
    Type: Application
    Filed: January 17, 2019
    Publication date: May 23, 2019
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Patent number: 10282567
    Abstract: A high voltage inductive adder is disclosed. In some embodiments, the high voltage inductive adder comprising a first adder circuit and a second adder circuit. The first adder circuit including a first source; a first switch electrically coupled with the first source; a first transformer core; and a first plurality of primary windings wound about the first transformer core and electrically coupled with the first switch. The second adder circuit including a second source; a second switch electrically coupled with the second source; a second transformer core; and a second plurality of primary windings wound about the second transformer core and electrically coupled with the second switch. The high voltage inductive adder comprising one or more secondary windings wound around both the first transformer core and the second transformer core and an output coupled with the plurality of secondary windings.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: May 7, 2019
    Assignee: EAGLE HARBOR TECHNOLOGIES, INC.
    Inventors: Kenneth E. Miller, James R. Prager, Timothy M. Ziemba, John G. Carscadden, Christopher Bowman, Ilia Slobodov
  • Publication number: 20190131110
    Abstract: Some embodiments include a high voltage waveform generator comprising: a generator inductor; a high voltage nanosecond pulser having one or more solid state switches electrically and/or inductively coupled with the generator inductor, the high voltage nanosecond pulser configured to produce a pulse burst having a burst period, the pulse burst comprising a plurality of pulses having different pulse widths; and a load electrically and/or inductively coupled with the high voltage nanosecond pulser, the generator inductor, and the generator capacitor, the voltage across the load having an output pulse with a pulse width substantially equal to the burst period and the voltage across the load varying in a manner that is substantially proportional with the pulse widths of the plurality of pulses.
    Type: Application
    Filed: August 27, 2018
    Publication date: May 2, 2019
    Applicant: Eagle Harbor Technologies, Inc.
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, John G. Carscadden, James R. Prager, Ilia Slobodov
  • Patent number: 10268846
    Abstract: A high voltage inductive adder is disclosed. In some embodiments, the high voltage inductive adder comprising a first adder circuit and a second adder circuit. The first adder circuit including a first source; a first switch electrically coupled with the first source; a first transformer core; and a first plurality of primary windings wound about the first transformer core and electrically coupled with the first switch. The second adder circuit including a second source; a second switch electrically coupled with the second source; a second transformer core; and a second plurality of primary windings wound about the second transformer core and electrically coupled with the second switch. The high voltage inductive adder comprising one or more secondary windings wound around both the first transformer core and the second transformer core and an output coupled with the plurality of secondary windings.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: April 23, 2019
    Assignee: EAGLE HARBOR TECHNOLOGIES, INC.
    Inventors: Kenneth E. Miller, James R. Prager, Timothy M. Ziemba, John G. Carscadden, Christopher Matthew Bowman, Ilia Slobodov
  • Publication number: 20190080884
    Abstract: Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
    Type: Application
    Filed: November 1, 2018
    Publication date: March 14, 2019
    Inventors: Timothy M. Ziemba, Kenneth Miller, James R. Prager, Jone G. Carscadden, Llia Slobodov
  • Publication number: 20180331655
    Abstract: A high frequency electromagnetic radiation generation device is disclosed that includes a high voltage input, a nonlinear transmission line, an antenna, and a pulse recirculating circuit. In some embodiments, the high voltage input may be configured to receive electrical pulses having a first peak voltage that is greater than 5 kV, and/or may be electrically coupled with the nonlinear transmission line. The antenna may be electrically coupled with the nonlinear transmission line and/or may radiate electromagnetic radiation at a frequency greater than 100 MHz about a voltage greater than 5 kV. The pulse recirculating may be electrically coupled with the high voltage input and the antenna. The pulse recirculating circuit may include a diode; a low pass filter; and a delay line. In some embodiments, unradiated energy from the antenna is directed through the pulse recirculating circuit to the nonlinear transmission line with a delay of less than 100 ns.
    Type: Application
    Filed: May 9, 2017
    Publication date: November 15, 2018
    Inventors: James R. Prager, Timothy M. Ziemba, Kenneth E. Miller