Patents by Inventor James R. Skarda

James R. Skarda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230355290
    Abstract: The disclosure relates to cryoablation probe assemblies including a cryoablation probe and sheath configured to accelerate thawing of the probe from frozen, treated tissue. The sheath can include a plurality of channels configured to direct saline or other biocompatible fluid to the treated tissue. The sheath is configured to slide and advance distally over the cryoablation probe to continually thaw the tissue until the cryoablation probe is freed. Methods of treating atrial fibrillation with a cryoablation probe assembly are also disclosed.
    Type: Application
    Filed: April 27, 2023
    Publication date: November 9, 2023
    Inventors: James R. Skarda, Justin Crank
  • Patent number: 10589130
    Abstract: A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: March 17, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: James B. Hissong, Mark T. Stewart, David E. Francischelli, James R. Keogh, Hotaik Lee, Nadine B. Smith, James R. Skarda
  • Patent number: 10335280
    Abstract: A method for treating a human patient includes emitting ultrasound energy from an ultrasound transducer positioned remotely from target tissue of the patient. The ultrasound transducer is positioned at a desired location relative to the patient and target tissue using location and imaging techniques. The method further includes focusing the ultrasound energy such that one or more focal points are directed to the target tissue of the patient and ablating the target tissue at each focal point. The target tissue is ablated via the focused ultrasound energy without ablating non-target tissue through which the ultrasound energy passes between the ultrasound transducer and the one or more focal points.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: July 2, 2019
    Assignee: Medtronic, Inc.
    Inventors: James R. Keogh, Timothy R. Ryan, Carol E. Eberhardt, Mark T. Stewart, James R. Skarda, Timothy G. Laske, Alexander J. Hill, Jack D. Lemmon, David E. Francischelli
  • Publication number: 20180263651
    Abstract: A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
    Type: Application
    Filed: March 12, 2018
    Publication date: September 20, 2018
    Inventors: James B. Hissong, Mark T. Stewart, David E. Francischelli, James R. Keogh, Hotaik Lee, Nadine B. Smith, James R. Skarda
  • Patent number: 9949831
    Abstract: A method for determining whether a medical device is appropriate for implanting into a cardiovascular conduit of a patient is disclosed comprising imaging a first section of the conduit of the patient into which the medical device is to be implanted during a first expanded state occurring at a first portion of a heart rhythm; reimaging the first section of the conduit of the patient during a first contracted state occurring at a second portion of the heart rhythm; deriving, from the imaging and the reimaging, dimensional characteristics of the first section of the conduit; and determining whether the medical device is appropriate for implantation in the first section of conduit based on the derived dimensional characteristics. The first section of the conduit includes a sizing device providing a selected radial force on the patient.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: April 24, 2018
    Assignee: Medtronics, Inc.
    Inventors: James R. Keogh, Timothy R. Ryan, Carol E. Eberhardt, Mark T. Stewart, James R. Skarda, Timothy G. Laske, Alexander J. Hill, Jack D. Lemmon, David E. Francischelli
  • Patent number: 9931134
    Abstract: A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: April 3, 2018
    Assignee: Medtronic, Inc.
    Inventors: James B. Hissong, Mark T. Stewart, David E. Francischelli, James R. Keogh, Hotaik Lee, Nadine B. Smith, James R. Skarda
  • Publication number: 20170296217
    Abstract: A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
    Type: Application
    Filed: July 5, 2017
    Publication date: October 19, 2017
    Inventors: James B. Hissong, Mark T. Stewart, David E. Francischelli, James R. Keogh, Hotaik Lee, Nadine B. Smith, James R. Skarda
  • Patent number: 9724119
    Abstract: A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: August 8, 2017
    Assignee: Medtronic, Inc.
    Inventors: James B. Hissong, Mark T. Stewart, David E. Francischelli, James R. Keogh, Hotaik Lee, Nadine B. Smith, James R. Skarda
  • Publication number: 20160302925
    Abstract: A method for valve replacement or valve repair is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding a valve replacement delivery member or a valve repair delivery member within the patient while tracking the position of the delivery member in the patient, positioning the valve replacement member or valve repair member in a desired position to place a valve or repair valve and removing the delivery member from the patient. In one aspect, a method and device are provided that involve imaging a native root using an interoperative technique, then introducing a device that is easily visualized in a chosen imaging modality.
    Type: Application
    Filed: April 14, 2016
    Publication date: October 20, 2016
    Inventors: James R. Keogh, Timothy R. Ryan, Carol E. Eberhardt, Mark T. Stewart, James R. Skarda, Timothy G. Laske, Alexander J. Hill, Jack D. Lemmon, David E. Francischelli
  • Patent number: 9227088
    Abstract: A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: January 5, 2016
    Assignee: Medtronic, Inc.
    Inventors: James B. Hissong, Mark T. Stewart, David E. Francischelli, James R. Keough, James R. Skarda, Hotaik Lee, Nadine B. Smith
  • Publication number: 20150005694
    Abstract: Apparatus and method for ablating target tissue including a non-linear area of tissue in the left atrium of a patient. The method can include selecting an ablation apparatus having an ablator with a tissue engagement section, penetrating a chest cavity of the patient, and identifying the target tissue. The method can also include positioning the ablation apparatus adjacent to the target tissue so that the tissue engagement section can transfer ablation energy to the target tissue. The method can further include energizing the tissue engagement section with ablation energy in order to create a footprint on the non-linear area of tissue in the left atrium and to reduce an overall mass of excitable tissue in the left atrium.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 1, 2015
    Inventors: David E. Francischelli, Mark T. Stewart, James R. Skarda
  • Patent number: 8801707
    Abstract: Apparatus and method for ablating target tissue including a non-linear area of tissue in the left atrium of a patient. The method can include selecting an ablation apparatus having an ablator with a tissue engagement section, penetrating a chest cavity of the patient, and identifying the target tissue. The method can also include positioning the ablation apparatus adjacent to the target tissue so that the tissue engagement section can transfer ablation energy to the target tissue. The method can further include energizing the tissue engagement section with ablation energy in order to create a footprint on the non-linear area of tissue in the left atrium and to reduce an overall mass of excitable tissue in the left atrium.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: August 12, 2014
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, Mark T. Stewart, James R. Skarda
  • Publication number: 20140221823
    Abstract: A method for valve replacement or valve repair is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding a valve replacement delivery member or a valve repair delivery member within the patient while tracking the position of the delivery member in the patient, positioning the valve replacement member or valve repair member in a desired position to place a valve or repair valve and removing the delivery member from the patient. In one aspect, a method and device are provided that involve imaging a native root using an interoperative technique, then introducing a device that is easily visualized in a chosen imaging modality.
    Type: Application
    Filed: February 6, 2014
    Publication date: August 7, 2014
    Applicant: Medtronic, Inc.
    Inventors: James R. Keogh, Timothy R. Ryan, Carol E. Eberhardt, Mark T. Stewart, James R. Skarda, Timothy G. Laske, Alexander J. Hill, Jack D. Lemmon, David E. Francischelli
  • Publication number: 20130072786
    Abstract: A device and method for valve replacement or valve repair is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding a valve replacement delivery member or a valve repair delivery member within the patient while tracking the position of the delivery member in the patient, positioning the valve replacement member or valve repair member in a desired position to replace a valve or repair valve and removing the delivery member from the patient.
    Type: Application
    Filed: August 14, 2012
    Publication date: March 21, 2013
    Applicant: MEDTRONIC, INC.
    Inventors: James R. Keogh, Timothy R. Ryan, Carol E. Eberhardt, Mark T. Stewart, James R. Skarda, Timothy G. Laske, Alexander J. Hill, Jack D. Lemmon, David E. Francischelli
  • Publication number: 20120316488
    Abstract: Apparatus and method for ablating target tissue including a non-linear area of tissue in the left atrium of a patient. The method can include selecting an ablation apparatus having an ablator with a tissue engagement section, penetrating a chest cavity of the patient, and identifying the target tissue. The method can also include positioning the ablation apparatus adjacent to the target tissue so that the tissue engagement section can transfer ablation energy to the target tissue. The method can further include energizing the tissue engagement section with ablation energy in order to create a footprint on the non-linear area of tissue in the left atrium and to reduce an overall mass of excitable tissue in the left atrium.
    Type: Application
    Filed: August 14, 2012
    Publication date: December 13, 2012
    Applicant: Medtronic, Inc.
    Inventors: David E. Francischelli, Mark T. Stewart, James R. Skarda
  • Patent number: 8257351
    Abstract: A catheter assembly for treatment of cardiac arrhythmia. The catheter assembly includes a catheter body and an ablative energy source. The catheter body includes a proximal portion, an intermediate portion, and a distal portion. The intermediate portion extends from the proximal portion and defines a longitudinal axis. The distal portion extends from the intermediate portion and includes an ablation section and a tip. The ablation section forms a loop defining a diameter greater than an outer dimension of a pulmonary vein ostium. The tip extends distally from the ablation section and is configured to locate a pulmonary vein. Finally, the ablative energy source is associated with the ablation section. With this configuration, upon activation of the energy source, the ablation section ablates a desired lesion pattern. In one preferred embodiment, the ablation section forms a distally decreasing radius helix, whereas the tip includes a relatively linear leader section.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: September 4, 2012
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Stewart, James R. Skarda
  • Patent number: 8241274
    Abstract: A device and method for valve replacement or valve repair is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding a valve replacement delivery member or a valve repair delivery member within the patient while tracking the position of the delivery member in the patient, positioning the valve replacement member or valve repair member in a desired position to place a valve or repair valve and removing the delivery member from the patient. In one aspect of the invention, a delivery system is provided for percutaneous delivery of a heart valve to a predetermined position in the heart of a patient, where the delivery system itself includes features that allow it to be accurately positioned in the heart. In another aspect of the invention, a delivery system is provided for percutaneous repair of a heart valve in the heart of a patient, where the repair system itself includes features that allow it to be accurately positioned in the heart.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: August 14, 2012
    Assignee: Medtronic, Inc.
    Inventors: James R. Keogh, Timothy R. Ryan, Carol E. Eberhardt, Mark T. Stewart, James R. Skarda, Timothy G. Laske, Alexander J. Hill, Jack D. Lemmon, David E. Francischelli
  • Patent number: 8221402
    Abstract: A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: July 17, 2012
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, James B. Hissong, James R. Keogh, James R. Skarda, Mark T. Stewart
  • Publication number: 20120101434
    Abstract: A medical system for introduction through a septum separating a first heart chamber from a second heart chamber includes a guide catheter with a distal segment and a guide catheter lumen adapted to receive a mapping/ablation catheter. The guide catheter includes a deployable retention mechanism that engages the septum and inhibits advancement or retraction of the guide catheter through the septum. The system also includes an ablation device for delivering ablation energy to tissue. The ablation device is positioned in a heart chamber via the guide catheter lumen.
    Type: Application
    Filed: January 5, 2012
    Publication date: April 26, 2012
    Inventors: Mark T. Stewart, David E. Francischelli, James R. Skarda
  • Patent number: 8096959
    Abstract: A trans-septal guide catheter for providing access through the septum separating a first heart chamber from a second heart chamber that includes an elongated guide catheter body extending between guide catheter proximal and distal ends. A distal segment of the guide catheter is adapted to be inserted through the septum to locate the distal segment of the guide catheter within one of the first heart chamber and the second heart chamber. The catheter body encloses a guide catheter lumen adapted to provide access into the one of the first heart chamber and the second heart chamber through a guide catheter lumen proximal end opening and a guide catheter lumen distal end opening. A retention mechanism engages the septum and maintains the distal segment of the guide catheter extending into the one of the first heart chamber and the second heart chamber.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: January 17, 2012
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Stewart, David E. Francischelli, James R. Skarda