Patents by Inventor James R. Thacker

James R. Thacker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180345017
    Abstract: Selective high-frequency spinal cord modulation for inhibiting pain with reduced side effects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal cord region to address low back pain without creating unwanted sensory and/or motor side effects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Application
    Filed: July 26, 2018
    Publication date: December 6, 2018
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20180333579
    Abstract: Selective high-frequency spinal cord modulation for inhibiting pain with reduced side effects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal cord region to address low back pain without creating unwanted sensory and/or motor side effects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Application
    Filed: July 27, 2018
    Publication date: November 22, 2018
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20180296828
    Abstract: A method for determining whether the relative position of electrodes used by a neurostimulation system has changed within a patient comprises determining the amplitude of a field potential at each of at least one of the electrodes, determining if a change in each of the determined electric field amplitudes has occurred, and analyzing the change in each of the determined electric field amplitudes to determine whether a change in the relative position of the electrodes has occurred. Another method comprises measuring a first monopolar impedance between a first electrode and a reference electrode, measuring a second monopolar impedance between second electrode and the reference electrode, measuring a bipolar impedance between the first and second electrodes, and estimating an amplitude of a field potential at the second electrode based on the first and second monopolar impedances and the bipolar impedance.
    Type: Application
    Filed: June 26, 2018
    Publication date: October 18, 2018
    Inventors: Kerry Bradley, James R. Thacker, Michael A. Moffitt
  • Patent number: 10076664
    Abstract: Methods for automatically programming a signal generator in a patient therapy system and associated systems are disclosed. A representative method comprises retrieving data including therapy program parameters, level of efficacy, and medication use corresponding to a plurality of time periods; identifying from the data a target time period having a corresponding level of efficacy; determining from the data if medication was used during the target time period; determining from the data if medication was used during a prior time period immediately before the target time period; calculating a lead position confidence factor; and programming the signal generator to repeat therapy with the therapy program parameters corresponding to the target time period if the confidence factor is greater than a threshold value and medication was used during the prior time period and not during the target time period.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: September 18, 2018
    Assignee: Nevro Corp.
    Inventors: James R. Thacker, Jon Parker
  • Publication number: 20180207432
    Abstract: Tissue stimulation systems generally include a pulse generating device for generating electrical stimulation pulses, at least one implanted electrode for delivering the electrical stimulation pulses generated by the pulse generating device, and a programmer capable of communicating with the pulse generating device. Stimulation pulses may be defined by several parameters, such as pulse width and amplitude. In methods of stimulating the tissue with the stimulation system, a user may adjust one of the parameters such as pulse width. The programmer may automatically adjust the pulse amplitude in response to the change in pulse width in order to maintain a substantially constant effect of the stimulation pulses.
    Type: Application
    Filed: March 22, 2018
    Publication date: July 26, 2018
    Inventors: James R. Thacker, Harold Haut, Robert Nathan, David K.L Peterson, Kerry Bradley
  • Patent number: 10022540
    Abstract: A method for determining whether the relative position of electrodes used by a neurostimulation system has changed within a patient comprises determining the amplitude of a field potential at each of at least one of the electrodes, determining if a change in each of the determined electric field amplitudes has occurred, and analyzing the change in each of the determined electric field amplitudes to determine whether a change in the relative position of the electrodes has occurred. Another method comprises measuring a first monopolar impedance between a first electrode and a reference electrode, measuring a second monopolar impedance between second electrode and the reference electrode, measuring a bipolar impedance between the first and second electrodes, and estimating an amplitude of a field potential at the second electrode based on the first and second monopolar impedances and the bipolar impedance.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: July 17, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kerry Bradley, James R. Thacker, Michael A. Moffitt
  • Patent number: 9993645
    Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications. In particular embodiments, aspects of the foregoing modulation therapies may be implemented by systems and devices that have simplified functionalities.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: June 12, 2018
    Assignee: Nevro Corp.
    Inventors: Andre B. Walker, Jon Parker, Konstantinos Alataris, James R. Thacker
  • Patent number: 9943694
    Abstract: Tissue stimulation systems generally include a pulse generating device for generating electrical stimulation pulses, at least one implanted electrode for delivering the electrical stimulation pulses generated by the pulse generating device, and a programmer capable of communicating with the pulse generating device. Stimulation pulses may be defined by several parameters, such as pulse width and amplitude. In methods of stimulating the tissue with the stimulation system, a user may adjust one of the parameters such as pulse width. The programmer may automatically adjust the pulse amplitude in response to the change in pulse width in order to maintain a substantially constant effect of the stimulation pulses.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: April 17, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: James R. Thacker, Harold Haut, Robert Nathan, David K. L. Peterson, Kerry Bradley
  • Patent number: 9907957
    Abstract: The invention is a system and method for detecting the status of a rechargeable battery included within an implantable medical device. The medical device can incorporate a status indicator which signals the user concerning the battery status, e.g., low battery level. The signal may be audible or it may arise from an electrical stimulation that is perceptually distinguished from the operative, therapeutic stimulation. The external programmer may also incorporate a second battery status indicator that is visual, audible, or physically felt. Battery status data may be conveyed on visual displays on the external programmer by uploading this information from the medical device using a bi-directional telemetry link. Such battery status data are helpful to the user to indicate when the battery should be recharged and to the clinician to monitor patient compliance and to determine end-of-useful life of the rechargeable battery.
    Type: Grant
    Filed: November 9, 2014
    Date of Patent: March 6, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Carla Mann Woods, James R. Thacker, David K. L. Peterson
  • Patent number: 9895538
    Abstract: Methods for identifying responders to paresthesia-free stimulation therapy, and associated systems are disclosed. A representative method comprises implanting a pair of spinal cord signal delivery devices and connecting an external signal generator thereto. A plurality of the electrical contacts are simultaneously activated with a high frequency signal without causing paresthesia in the patient, wherein the electrical contacts would cause paresthesia in the patient if activated with a low frequency signal. The high frequency signal is in a range of from about 3 kHz to about 20 kHz and an amplitude of less than 4 mA. If the patient responds favorably, a signal generator is implanted in the patient. A second high frequency signal is then applied to fewer than the plurality of electrical contacts.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: February 20, 2018
    Assignee: Nevro Corp.
    Inventors: James R. Thacker, Andre B. Walker, Jon Parker, Bradford Evan Gliner, Heinz Moeri
  • Patent number: 9878166
    Abstract: A method, computer medium, and system for programming a controller is provided. The controller controls electrical stimulation energy output to electrodes, and stores a set of programmed stimulation parameters associated with the electrodes. The programmed stimulation parameter set is compared with sets of reference stimulation parameters, each of the reference sets of stimulation parameters being associated with the electrodes. If an identical match is determined between the programmed stimulation parameter set and any one of the reference stimulation parameter sets exists based on the comparison, the identically matched stimulation parameter set is selected as an initial stimulation parameter set. If an identical match does not exist, a best between the programmed stimulation parameter set and the reference stimulation parameter sets is determined and selected as the initial stimulation parameter set.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: January 30, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: James R. Thacker, Michael A. Moffitt, Kerry Bradley, David K. L. Peterson
  • Publication number: 20170281949
    Abstract: Distributed electrode lead configurations for providing electrical therapy, and associated systems and methods. A representative patient therapy system includes at least one implantable signal delivery device having a proximal portion and a distal portion. The proximal portion is configured to be coupled with an implantable pulse generator to direct a pulsed electrical signal at a frequency from about 1.5 kHz to about 100 kHz. The distal portion includes multiple electrical contacts for delivering the pulsed electrical signal to a target neural population of a patient when implanted. At least three neighboring electrical contacts of the multiple electrical contacts are electrically connected together and have equal lengths less than 3 mm. The at least three neighboring electrical contacts are uniformly spaced apart by a distance from about 1 mm to about 8 mm.
    Type: Application
    Filed: March 15, 2017
    Publication date: October 5, 2017
    Inventor: James R. Thacker
  • Patent number: 9731133
    Abstract: Methods for systematically testing a plurality of therapy programs in a spinal cord modulation system, and associated systems are disclosed. A representative method comprises loading a plurality of therapy programs into a signal generator, wherein individual therapy programs include parameters specifying electrode configuration, signal amplitude, and/or signal frequency. The programs are automatically activated for an automatically instructed period of time. The method includes automatically changing from one therapy program to another after the instructed period of time. The patient is queried for patient input corresponding to the therapy programs. The patient input is received via a remote. The patient input is correlated with a corresponding time of day and recorded in the signal generator. Thereafter, the patient input is retrieved from the signal generator.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: August 15, 2017
    Assignee: Nevro Corp.
    Inventors: James R. Thacker, Jon Parker
  • Publication number: 20170209699
    Abstract: Systems and methods for treating congestive heart failure with high frequency stimulation are disclosed. A representative method for treating a patient includes applying an electrical signal having a frequency of from about 1 kHz to about 100 kHz to the patient via a treatment system that includes a signal delivery element in electrical communication with the patient's vagus nerve at a portion of the vagus nerve located at or proximate to the anterior interventricular junction of the patient's heart. The method can further include automatically detecting at least one physiological parameter of the patient, automatically determining at least one of an ejection fraction of the patient's heart and a correlate of the ejection fraction based on the detected parameter, and automatically adjusting the applied signal based on the determined ejection fraction.
    Type: Application
    Filed: January 24, 2017
    Publication date: July 27, 2017
    Inventors: James R. Thacker, Kerry Bradley
  • Publication number: 20170182314
    Abstract: A method for determining whether the relative position of electrodes used by a neurostimulation system has changed within a patient comprises determining the amplitude of a field potential at each of at least one of the electrodes determining if a change in each of the determined electric field amplitudes has occurred, and analyzing the change in each of the determined electric field amplitudes to determine whether a change in the relative position of the electrodes has occurred. Another method comprises measuring a first monopolar impedance between a first electrode and a reference electrode, during a second monopolar impedance between second electrode and the reference electrode, measuring a bipolar impedance between the first and second electrodes, and estimating an amplitude of a field potential at the second electrode based on the first and second monopolar impedances and the bipolar impedance.
    Type: Application
    Filed: March 15, 2017
    Publication date: June 29, 2017
    Inventors: Kerry Bradley, James R. Thacker, Michael A. Moffitt
  • Patent number: 9687653
    Abstract: A programming system for selecting an electrode configuration for use in a medical electrical stimulator coupled to an electrode array. A programmer is configured for providing a set of electrode configurations for the electrode array, automatically testing a first portion of the set of electrode configurations in a first order, allowing the selection of one or more of the tested electrode configurations, determining whether a suitable number of electrode configurations from among the first portion have been selected within a predefined interval, and automatically testing a second portion of the set of electrode configurations in a second order if the suitable number of electrode configurations from among the first portion are not selected within the predefined interval. The programmer may further allow the selection of the tested electrode configurations, and adjusting parameters during the testing, wherein the adjusting is controllably shared in parallel between a clinician and a patient.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: June 27, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Carla M. Woods, James R. Thacker, David K. Peterson, Holly A. Segel, Susan E. Ford, Margaret E. Theriot, Kerry Bradley
  • Patent number: 9687649
    Abstract: A spinal cord lead anchor comprising a longitudinally extending sleeve having an aperture sized and positioned to receive a spinal cord lead. A retainer is disposed around the sleeve and is operative to compress at least a portion of the sleeve against a spinal cord lead extending through the sleeve. A cover extends around the retainer and includes at least one opening formed through the cover to facilitate engaging the retainer with a tool.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: June 27, 2017
    Assignee: Nevro Corp.
    Inventor: James R. Thacker
  • Patent number: 9610439
    Abstract: A method for determining whether the relative position of electrodes used by a neurostimulation system has changed within a patient comprises determining the amplitude of a field potential at each of at least one of the electrodes, determining if a change in each of the determined electric field amplitudes has occurred, and analyzing the change in each of the determined electric field amplitudes to determine whether a change in the relative position of the electrodes has occurred. Another method comprises measuring a first monopolar impedance between a first electrode and a reference electrode, measuring a second monopolar impedance between second electrode and the reference electrode, measuring a bipolar impedance between the first and second electrodes, and estimating an amplitude of a field potential at the second electrode based on the first and second monopolar impedances and the bipolar impedance.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: April 4, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kerry Bradley, James R. Thacker, Michael A. Moffitt
  • Patent number: 9592388
    Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications. In particular embodiments, aspects of the foregoing modulation therapies may be implemented by systems and devices that have simplified functionalities.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: March 14, 2017
    Assignee: Nevro Corp.
    Inventors: Jon Parker, James R. Thacker
  • Publication number: 20160367826
    Abstract: A method, computer medium, and system for programming a control device are provided. The control device is configured for controlling electrical stimulation energy provided to a plurality of electrode leads that are physically implanted within a patient in a side-by-side lead configuration. Electrical energy is conveying from the electrode leads to create a stimulation region within the patient. The stimulation region is automatically shifted along the electrode leads (e.g., by selecting and using at least one navigation table) in accordance with an electrical current shifting pattern that is based on a stagger of the side-by-side lead configuration. At least one stimulation parameter set is selected based on the effectiveness of the shifted stimulation region, and the control device is programmed with the selected stimulation parameter set(s).
    Type: Application
    Filed: August 31, 2016
    Publication date: December 22, 2016
    Inventors: Sridhar Kothandaraman, Carla Mann Woods, Kerry Bradley, James R. Thacker, Sivakumar Karnati