Patents by Inventor James R. Younkin

James R. Younkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11568766
    Abstract: A fiber Bragg grating (FBG) security component for single-party and multi-party monitoring is provided. The security component includes an optical fiber having a plurality of Bragg gratings. The Bragg gratings provide a spectral response that is randomized based on the manufacture of the security component. For single-party use, the spectral response provides a reproducible spectral signature when interrogated with an optical signal. For multi-party use, each party applies a known optical interrogation signal to the security component and applies an external stress known only to the respective monitoring party. The resulting shift in the spectral signature is unique to each monitoring party, making it extremely difficult to successfully counterfeit the security component's response for all such parties.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: January 31, 2023
    Assignee: UT-BATTELLE, LLC
    Inventors: Klaus-Peter Ziock, William R. Ray, James R. Younkin, Brandon R. Longmire
  • Publication number: 20210312837
    Abstract: A fiber Bragg grating (FBG) security component for single-party and multi-party monitoring is provided. The security component includes an optical fiber having a plurality of Bragg gratings. The Bragg gratings provide a spectral response that is randomized based on the manufacture of the security component. For single-party use, the spectral response provides a reproducible spectral signature when interrogated with an optical signal. For multi-party use, each party applies a known optical interrogation signal to the security component and applies an external stress known only to the respective monitoring party. The resulting shift in the spectral signature is unique to each monitoring party, making it extremely difficult to successfully counterfeit the security component's response for all such parties.
    Type: Application
    Filed: April 6, 2021
    Publication date: October 7, 2021
    Inventors: Klaus-Peter Ziock, William R. Ray, James R. Younkin, Brandon R. Longmire
  • Patent number: 10147289
    Abstract: Sensing devices, systems and methods for securing articles against tampering using a unique magnetic field signature measured at two different times are provided. One or more sensing devices are secured to a ferrous surface portion of a target container. The sensing devices are secured using a plurality of magnets. The unique magnetic field signature sensed by a sensing device is produced by a combination of the plurality of magnets of the sensing device and the ferrous surface portion of the target container and earth's magnetic field. The two different times being one of a baseline measurement session and one of an observation measurement session. An observation measurement session may be triggered by a shock event or periodically.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: December 4, 2018
    Assignee: UT-BATTELLE, LLC
    Inventors: Charles L. Britton, Jr., Steven S. Frank, Michael J. Kuhn, Andrzej Nycz, Chris A. Pickett, Scott L. Stewart, Robert J. Warmack, Richard A. Willems, James R. Younkin
  • Publication number: 20180293860
    Abstract: Sensing devices, systems and methods for securing articles against tampering using a unique magnetic field signature measured at two different times are provided. One or more sensing devices are secured to a ferrous surface portion of a target container. The sensing devices are secured using a plurality of magnets. The unique magnetic field signature sensed by a sensing device is produced by a combination of the plurality of magnets of the sensing device and the ferrous surface portion of the target container and earth's magnetic field. The two different times being one of a baseline measurement session and one of an observation measurement session. An observation measurement session may be triggered by a shock event or periodically.
    Type: Application
    Filed: April 5, 2018
    Publication date: October 11, 2018
    Inventors: Charles L. Britton, JR., Steven S. Frank, Michael J. Kuhn, Andrzej Nycz, Chris A. Pickett, Scott L. Stewart, Robert J. Warmack, Richard A. Willems, James R. Younkin
  • Patent number: 7305286
    Abstract: A flight instrument and associated method where vertical speed information is combined with gyro information to produce gyro enhanced vertical speed information that is displayed to a pilot. The gyro information may include a pitch rate gyro and may include an azimuth rate gyro. The pitch rate gyro and azimuth rate gyro may be combined to yield a corrected pitch rate in turns. In one embodiment, the display is an airplane symbol that moves relative to a horizon line responsive to the gyro enhanced vertical speed information. The horizon line may also tilt in response to the azimuth rate gyro.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: December 4, 2007
    Assignee: TruTrak Flight Systems, Inc.
    Inventors: James R. Younkin, Charles R. Bilbe
  • Patent number: 7295135
    Abstract: A flight instrument displays azimuth information in combination with horizon information and other optional information such as altitude and/or airspeed. Azimuth information is displayed using an elliptical pattern placed below a horizon line displaying horizon information. The horizon information may be based on gyro enhanced vertical speed and/or vertical axis information. The elliptical pattern may be representative of a horizontal circular heading indicator viewed from above and behind the circular indicator. In one embodiment, the elliptical azimuth pattern moves in response to movement of the horizon line to maintain position below the horizon line. Airspeed and/or altitude information may be displayed at the sides of the screen area using a circular arc display pattern.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: November 13, 2007
    Assignee: TruTrak Flight Systems, Inc.
    Inventor: James R. Younkin
  • Patent number: 7044024
    Abstract: Autopilot control of an aircraft is accomplished using a servo wherein the input shaft and output shaft are collinear. In one embodiment, the output shaft is supported, in part, by the input shaft. In further embodiments an engage clutch mechanism is provided to allow decoupling of the motor from the output shaft, and a slip clutch mechanism is provided to limit the torque output of the servo to enhance the safety of operation. The collinear shaft arrangement enables the engage clutch mechanism and slip clutch mechanism to synergistically utilize components for multiple functions.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: May 16, 2006
    Assignee: TruTrak Flight Systems, Inc.
    Inventor: James R. Younkin
  • Patent number: 7021587
    Abstract: A system for providing automatic trim control associated with a control surface in an aircraft that utilizes at least two sensors that must agree in direction before trim adjustment is made. Each sensor is provided with a separate an independent controller channel to further enhance fail-safe operation. A trim sensor is placed in the coupling link between a servo and aircraft primary control linkage leading to the associated control surface. A trim sensor is provided that utilizes a spring with a portion disposed laterally with respect to the direction of the force to be measured. An arm is attached to the lateral portion of the spring to effect motion that can be sensed by various sensors including optical, mechanical switch and magnetic sensors.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: April 4, 2006
    Assignee: Trutrak Flight Systems, Inc
    Inventor: James R. Younkin
  • Patent number: 6961643
    Abstract: A system and associated method where a vertical flight dynamic sensor is stabilized using pitch rate gyro information combined with azimuth rate gyro information corrected by scaling the azimuth rate gyro information in accordance with feedback derived from the difference between the vertical flight dynamic sensor signal and the corrected vertical flight dynamic output. In one embodiment, the vertical flighy dynamic sensor may be a vertical speed sensor. In another embodiment, the vertical flight dynamic sensor may be a pitch attitude sensor derived from the difference between an inertial based acceleration signal and a velocity based acceleration signal. The velocity based acceleration signal may be based on airspeed or GPS velocity.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: November 1, 2005
    Assignee: Tru Trak Flight Systems, Inc
    Inventors: James R. Younkin, Charles R. Bilbe
  • Patent number: 4370815
    Abstract: A horizontal situation indicator having a heading card direct-driven by a directional gyro is provided. Relative positioning of the heading card and one or more navigation indicators is determined by sensing an electrical differential between a transducer associated with a heading card and a transducer associated with each navigation indicator. Spring-loaded clutch mechanisms are provided to allow adjustment of the navigation indicators without applying a torque to the heading card and gyro.
    Type: Grant
    Filed: March 23, 1981
    Date of Patent: February 1, 1983
    Assignee: Edo-Aire Mitchell
    Inventor: James R. Younkin
  • Patent number: 4185394
    Abstract: Artificial horizon indicators are precise, gyroscopic flight instruments designed to furnish an aircraft pilot with an artificial indication of an aircraft pitch and roll attitude with respect to earth. Basically, such indicators include a gyro gimbaled within a frame which is fixed to the aircraft. Roll indicia is responsive to the gyro for rotation within a display window as a part of the frame about an axis parallel to the roll axis of the aircraft. A spherically shaped horizon indicating member is also responsive to the gyro for movement within the display window to remain parallel to the actual horizon during flight of the aircraft. The spherical horizon indicating member is pivotally mounted to the frame between the gimbal axis of the gyro and the roll indicia. The coupling of a horizon indicating member to the gyro includes a two stage three pin drive to present the aircraft pilot a uniform movement of the horizon indicating member for movement of the aircraft about the pitch axis.
    Type: Grant
    Filed: April 10, 1978
    Date of Patent: January 29, 1980
    Inventor: James R. Younkin
  • Patent number: 4053818
    Abstract: A remote magnetic instrument, such as a compass, and a heading indicator, such as a heading gyro, are time shared in a dual channel gyro slaving amplifier with slaving and boot strap circuitry. The amplifier is a two function electronic device wherein the slaving circuit accepts heading error data from a heading gyro and provides separate channels of amplified information to slave drive the heading gyro. The second function of the amplifier is an electronic boot strap circuit to extract information from the heading gyro to drive a remote magnetic instrument. Each of the two functions shares equal time by operation of a time sharing switch with a timing signal provided from a ripple counter. The amplified information providing during the first function of the amplifier is a slaving signal representing heading correction generated by the slaving circuit responding to a heading error signal from the heading indicator.
    Type: Grant
    Filed: April 1, 1976
    Date of Patent: October 11, 1977
    Inventor: James R. Younkin
  • Patent number: 4008618
    Abstract: Aircraft altitude is visually displayed at a front panel of a flight instrument in analog form by a rotating pointer and in digital form by means of a rotary drum digital indicator. Barometric pressure is converted into rectilinear motion to drive a mechanical-to-electrical transducer providing a signal to a servo amplifier having an output coupled to a servomotor. The servomotor drives both the rotating pointer and the rotary drum digital indicator. Also coupled to the mechanical-to-electrical transducer is a manually adjustable set input signal to correct for atmospheric pressure along a given flight path with respect to sea level. Temperature and altitude error corrections are also coupled to the transducer to correct the servomotor drive signal to give a true indicated altitude display. Also driven by the servomotor is a pressure altitude encoder for providing absolute altitude digital signals for transmission to a ground station.
    Type: Grant
    Filed: August 4, 1975
    Date of Patent: February 22, 1977
    Assignee: Edo-Aire Mitchell Industries, Inc.
    Inventor: James R. Younkin
  • Patent number: 3953847
    Abstract: A pressure altitude signal actuates a servomotor coupled through a gear train to an altimeter that includes a rotational shaft for repositioning an aneroid pickoff. Mounted on the rotational shaft is an encoding disc with seven code formations supported on one face of the disc. Each code formation has a generally circular configuration with the various formations juxtapositioned. Six brush pickoffs respond to the six outermost code formations to provide pulse trains related to altitude pressure. A seventh brush pickoff provides a reference code to encoder logic that generates three additional pulse trains related to altitude pressure. The pulse trains of the outer six code formations and the pulse trains from the encoder logic uniquely identify by means of a code bit pattern an altitude.
    Type: Grant
    Filed: March 25, 1974
    Date of Patent: April 27, 1976
    Assignee: Edo-Aire Mitchell Industries, Inc.
    Inventors: James R. Younkin, John M. Nixon
  • Patent number: 3940990
    Abstract: Aircraft altitude is visually displayed at a front panel of a flight instrument in analog form by a rotating pointer and in digital form by means of a rotary drum digital indicator. Barometric pressure is converted into rectilinear motion to drive a mechanical-to-electrical transducer providing a signal to a servo amplifier having an output coupled to a servomotor. The servomotor drives both the rotating pointer and the rotary drum digital indicator. Also coupled to the mechanical-to-electrical transducer is a manually adjustable set input signal to correct for atmospheric pressure along a given flight path with respect to sea level. Temperature and altitude error corrections are also coupled to the transducer to correct the servomotor drive signal to give a true indicated altitude display. Also driven by the servomotor is a pressure altitude encoder for providing absolute altitude digital signals for transmission to a ground station.
    Type: Grant
    Filed: March 25, 1974
    Date of Patent: March 2, 1976
    Assignee: Edo-Aire Mitchell Industries, Inc.
    Inventor: James R. Younkin
  • Patent number: 3936715
    Abstract: A system for electrically actuating the pitch trim of an aircraft in both autopilot and manual modes includes a primary pitch servomotor coupled to a primary control surface and a pitch trim servomotor for actuating a trim control surface. In the autopilot mode, an electrical signal applied to the primary pitch servomotor by the autopilot is also applied to two channels of a trim controller providing complementary output signals applied to the pitch trim servomotor. Each channel of the trim controller includes a voltage translator for providing a single ended voltage applied to an integrator that generates an output varying with the time average of the electrical signal applied to the primary pitch servomotor. This time average signal as generated in each channel is chopped into an alternating current signal for driving an output stage. The chopping duty cycle of each channel is varied in accordance with the absolute value of a time average of the electrical signal applied to the primary pitch servomotor.
    Type: Grant
    Filed: August 9, 1974
    Date of Patent: February 3, 1976
    Assignee: Edo-Aire Mitchell Industries, Inc.
    Inventors: John M. Nixon, James R. Younkin