Patents by Inventor James Rawnick

James Rawnick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7173577
    Abstract: A phased array antenna (100) having a frequency selective surface comprises a substrate (125) and an array of antenna elements (140) thereon. Each antenna element comprises a medial feed portion (42) and a pair of legs (49) extending outwardly therefrom. Adjacent legs of adjacent antenna elements include respective spaced apart end portions (51). The antenna further comprises at least one fluidic dielectric residing within at least one cavity (170) within the substrate and arranged between a plane where the array of dipole antenna elements reside and a ground plane (150), at least one composition processor (104) adapted for dynamically changing a composition of said fluidic dielectric, and a controller (102) for controlling the composition processor to selectively vary at least one of a permittivity and a permeability of the fluidic dielectric in at least one cavity in response to a control signal (105).
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: February 6, 2007
    Assignee: Harris Corporation
    Inventors: Stephen Brown, James Rawnick
  • Publication number: 20060256027
    Abstract: Method for controlling an input impedance of an antenna (100). The method can include the steps of coupling RF energy from an input RF transmission line (106) to an antenna radiating element (102) through an aperture (112) defined in a ground plane (110). For example, the aperture (112) can be a slot and the radiating element (102) can be a patch type element. The input impedance can thereafter be controlled by selectively varying a volume or a position of a conductive fluid (128) disposed in a predetermined region between the RF transmission line and the antenna radiating element. The volume of conductive fluid (128) can be automatically varied in response to at least one control signal (132).
    Type: Application
    Filed: July 20, 2006
    Publication date: November 16, 2006
    Applicant: HARRIS CORPORATION
    Inventors: James Rawnick, Timothy Durham, Stephen Brown
  • Patent number: 7053861
    Abstract: A reflector antenna (100) includes a reflector unit (191) having at least one cavity (192) disposed in the reflector unit, at least one fluidic dielectric (180) having a permittivity and a permeability, and at least one composition processor (101) adapted for dynamically changing a composition of the fluidic dielectric to vary at least the permittivity or permeability in at least one cavity for the purpose of dynamically altering the illumination taper of the reflector antenna. The antenna further comprises a controller (136) for controlling the composition processor in response to a control signal (137).
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: May 30, 2006
    Assignee: Harris Corporation
    Inventors: James Rawnick, Stephen Brown
  • Publication number: 20050237264
    Abstract: A reflector antenna system may include at least one antenna reflector having an arcuate shape and defining an antenna beam, a feed device spaced apart from the at least one antenna reflector, and a phased array antenna positioned in the antenna beam between the at least one antenna reflector and the feed device. More particularly, the phased array antenna may include a substrate and a plurality of back-to-back pairs of first antenna elements carried by the substrate and configured for defining at least one feed-through zone for the antenna beam. The phased array antenna may further include a plurality of back-to-back pairs of second antenna elements carried by the substrate and defining at least one active beamsteering zone for the antenna beam.
    Type: Application
    Filed: April 21, 2004
    Publication date: October 27, 2005
    Applicant: Harris Corporation, Corporation of the State of Delaware
    Inventors: Timothy Durham, James Rawnick
  • Publication number: 20050237267
    Abstract: A phased array antenna (100) having a frequency selective surface comprises a substrate (125) and an array of antenna elements (140) thereon. Each antenna element comprises a medial feed portion (42) and a pair of legs (49) extending outwardly therefrom. Adjacent legs of adjacent antenna elements include respective spaced apart end portions (51). The antenna further comprises at least one fluidic dielectric residing within at least one cavity (170) within the substrate and arranged between a plane where the array of dipole antenna elements reside and a ground plane (150), at least one composition processor (104) adapted for dynamically changing a composition of said fluidic dielectric, and a controller (102) for controlling the composition processor to selectively vary at least one of a permittivity and a permeability of the fluidic dielectric in at least one cavity in response to a control signal (105).
    Type: Application
    Filed: June 21, 2005
    Publication date: October 27, 2005
    Applicant: Harris Corporation
    Inventors: Stephen Brown, James Rawnick
  • Publication number: 20050237265
    Abstract: A reflector antenna system may include an arc-shaped antenna reflector defining a first antenna beam, and a phased array antenna positioned in the first antenna beam including first and second arrays of antenna elements coupled together in back-to-back relation. The first array may face the antenna reflector, and the second array may face away from it. A controller switchable between a reflecting mode and a direct mode may be connected to the arrays. The controller, when in the reflecting mode, may cause back-to-back pairs of first antenna elements from the arrays to define a feed-through zone for the first antenna beam, and cause second antenna elements in the first array to define a first active zone for the first antenna beam. Furthermore, when in the direct mode, the controller may cause antenna elements in the second array to define a second active zone for a second antenna beam.
    Type: Application
    Filed: April 21, 2004
    Publication date: October 27, 2005
    Applicant: Harris Corporation
    Inventors: Timothy Durham, James Rawnick
  • Publication number: 20050237266
    Abstract: A reflector antenna system may include at least one antenna reflector having an arcuate shape and defining an antenna beam, and a phased array antenna positioned in the antenna beam. More particularly, the phased array antenna may include a substrate and a plurality of back-to-back pairs of first antenna elements carried by the substrate and configured for defining at least one feed-through zone for the antenna beam. Moreover, the phased array antenna may further include a plurality of second antenna elements carried by the substrate and defining at least one active zone for the antenna beam.
    Type: Application
    Filed: April 21, 2004
    Publication date: October 27, 2005
    Applicant: Harris Corporation, Corporation of the State of Delaware
    Inventors: Timothy Durham, James Rawnick
  • Publication number: 20050195120
    Abstract: A reflector antenna (100) includes a reflector unit (191) having at least one cavity (192) disposed in the reflector unit, at least one fluidic dielectric (180) having a permittivity and a permeability, and at least one composition processor (101) adapted for dynamically changing a composition of the fluidic dielectric to vary at least the permittivity or permeability in at least one cavity for the purpose of dynamically altering the illumination taper of the reflector antenna. The antenna further comprises a controller (136) for controlling the composition processor in response to a control signal (137).
    Type: Application
    Filed: April 27, 2005
    Publication date: September 8, 2005
    Applicant: Harris Corporation
    Inventors: James Rawnick, Stephen Brown
  • Publication number: 20050073376
    Abstract: A phase delay line (110). The phase delay line can include an RF transmission line (111) and a fluid channel (109) having a serpentine configuration. The transmission line can be coupled to a solid dielectric substrate material (102), for example a substrate formed from a low temperature co-fired ceramic material. The fluid channel can be coupled to the RF transmission line along at least a portion of a length of the transmission line. A phase delay of the RF transmission line can be selectively varied by adjusting a distribution of the fluidic dielectric (130) present within the fluid channel. Similarly, the phase delay of the RF transmission line also can be maintained constant as an operational frequency of the RF transmission line is varied.
    Type: Application
    Filed: October 3, 2003
    Publication date: April 7, 2005
    Inventors: James Rawnick, Stephen Brown
  • Publication number: 20050057415
    Abstract: An antenna can include at least one antenna element (102) to which a fluid dielectric (114) is magnetically and electrically coupled. The antenna element (102) is preferably a conductive wire or patch disposed on a dielectric substrate (104), but it can also be a slot. A fluid control system (116, 118, 120) can be provided responsive to a control signal (124) for selectively varying a volume of the fluid dielectric (114) coupled to the antenna element (102). Consequently, efficient operation of the antenna element can be provided on a plurality of operating bands.
    Type: Application
    Filed: August 25, 2003
    Publication date: March 17, 2005
    Inventors: James Rawnick, Stephen Brown
  • Publication number: 20050057431
    Abstract: A phased array antenna (100) having a frequency selective surface comprises a substrate (125) and an array of antenna elements (140) thereon. Each antenna element comprises a medial feed portion (42) and a pair of legs (49) extending outwardly therefrom. Adjacent legs of adjacent antenna elements include respective spaced apart end portions (51). The antenna further comprises at least one fluidic dielectric residing within at least one cavity (170) within the substrate and arranged between a plane where the array of dipole antenna elements reside and a ground plane (150), at least one composition processor (104) adapted for dynamically changing a composition of said fluidic dielectric, and a controller (102) for controlling the composition processor to selectively vary at least one of a permittivity and a permeability of the fluidic dielectric in at least one cavity in response to a control signal (105).
    Type: Application
    Filed: August 25, 2003
    Publication date: March 17, 2005
    Inventors: Stephen Brown, James Rawnick
  • Publication number: 20050052260
    Abstract: A variable phase delay line (100). The variable phase delay line (100) can include an RF transmission line (102) and a fluid channel (130) having a serpentine configuration. The fluid channel (130) can be coupled to the RF transmission line (102) along at least a portion of a length of the transmission line (102). The variable phase delay line (100) also can include at least one fluid control system (150) for adding and removing the fluidic dielectric (132) to the fluid channel (130) in response to a phase delay control signal (122) to selectively vary a phase delay of the RF transmission line (102). The fluidic dielectric (132) can have a permeability and a permittivity selected for maintaining a constant characteristic impedance along an entire length of the RF transmission line (102).
    Type: Application
    Filed: September 4, 2003
    Publication date: March 10, 2005
    Inventors: Stephen Brown, James Rawnick
  • Publication number: 20050052258
    Abstract: A transmission line transformer (102) having an electrical length and a fluid dielectric (108). A fluid control system (150) is also provided for selectively moving the fluid dielectric (108) from a first position to a second position. In the first position, the fluid dielectric (108) is electrically and magnetically coupled to the transmission line transformer (102) to produce a first impedance transformation. In the second position, the fluid dielectric is electrically and magnetically decoupled from the transmission line transformer (102) to produce a second impedance transformation distinct from the first impedance transformation. The fluid control system (150) can be responsive to a control signal (174) and can include a pump (154) for moving the fluid dielectric from the first position to the second position.
    Type: Application
    Filed: September 10, 2003
    Publication date: March 10, 2005
    Inventors: Stephen Brown, James Rawnick
  • Publication number: 20050048934
    Abstract: Method for controlling an input impedance of an antenna (100). The method can include the steps of coupling RF energy from an input RF transmission line (106) to an antenna radiating element (102) through an aperture (112) defined in a ground plane (110). For example, the aperture (112) can be a slot and the radiating element (102) can be a patch type element. The input impedance can thereafter be controlled by selectively varying a volume or a position of a conductive fluid (128) disposed in a predetermined region between the RF transmission line and the antenna radiating element. The volume of conductive fluid (128) can be automatically varied in response to at least one control signal (132).
    Type: Application
    Filed: August 27, 2003
    Publication date: March 3, 2005
    Inventors: James Rawnick, Timothy Durham, Stephen Brown
  • Publication number: 20050046522
    Abstract: A variable RF filter (102) which includes one or more filter elements (104,106). The filter elements (104,106) can be formed from a structure selected from the group consisting of stripline, microstrip, and buried microstrip. A fluid dielectric (108) and a fluid control system (150) for selectively moving the fluid dielectric from a first position to a second position are provided. In the first position, the fluid dielectric (108) is electrically and magnetically coupled to the filter elements (104,106) to produce a first filter response. In the second position, the fluid dielectric (108) is electrically and magnetically decoupled from the filter elements (104,106) to produce a second filter response distinct from the first filter response. The first position can be defined by a bounded region located adjacent to the filter elements (104,106) and the second position is defined by a fluid storage reservoir (170).
    Type: Application
    Filed: August 25, 2003
    Publication date: March 3, 2005
    Inventors: James Rawnick, Stephen Brown
  • Publication number: 20050035916
    Abstract: An antenna can comprise a conductive reflecting surface (204) and a plurality of cells (202) disposed over the conductive reflecting surface. The plurality of cells can be formed from a solid dielectric material such as a low temperature cofired ceramic. Each cell can define a cavity for containing at least a fluid dielectric (406). One or more fluid processors (404, 424) independently vary a volume of the first fluid dielectric in the plurality of cells for producing a redirected RF beam at a selected angle relative to an incident RF signal impinging on the conductive reflecting surface.
    Type: Application
    Filed: August 13, 2003
    Publication date: February 17, 2005
    Inventors: Stephen Brown, James Rawnick
  • Publication number: 20050035834
    Abstract: A circuit for processing radio frequency signals that includes an adjustable transmission line stub (104). The adjustable transmission line stub (104) has an input (106) at one end, an electrical length and a termination (112). The circuit also includes a signal return conductor (124) and at least one fluid conduit (114) extending from the transmission line stub (104) to the signal return conductor (124). A fluid control system (150) is provided for selectively moving a conductive fluid (126) from a first position to a second position. The fluid control system is responsive to a control signal (174) for selectively moving the conductive fluid (126) between the first and second position. The fluid control system (150) can include a pump (154, 158, 156) for moving the conductive fluid (126) between the first position and the second position.
    Type: Application
    Filed: August 13, 2003
    Publication date: February 17, 2005
    Inventors: James Rawnick, Stephen Brown
  • Publication number: 20050030236
    Abstract: A redirecting feedthrough lens antenna system may include first and second phased array antennas coupled together in back-to-back relation. More particularly, the first and second phased array antennas may include respective first and second arrays of dipole antenna elements thereon, wherein each dipole antenna element may include a medial feed portion and a pair of legs extending outwardly therefrom. The system may also include a respective phase shifter connected between each pair of back-to-back dipole antenna elements of the first and second dipole antenna arrays. Furthermore, a controller may be included for cooperating with the phase shifters to cause a signal received by the first phased array antenna at a first angle to be transmitted from the second phased array antenna at a redirected second angle different from the first angle.
    Type: Application
    Filed: April 21, 2004
    Publication date: February 10, 2005
    Applicant: Harris Corporation
    Inventors: Timothy Durham, James Rawnick
  • Publication number: 20050030238
    Abstract: Method and apparatus for steering an antenna beam using a periodic resonance structure (300). The method can include the step of electrically and magnetically coupling a first fluid dielectric (114) to a plurality of transmission line stubs (104) that are respectively coupled to a plurality of radiating elemments (102) of a periodic resonance structure (300). The first fluid dielectric (114) is controlled to selectively vary an electrical length of each of the transmission line stubs (104). This permits directing an angle of a redirected RF beam produced by an incident RF signal (306) impinging on the periodic resonance structure (300).
    Type: Application
    Filed: August 8, 2003
    Publication date: February 10, 2005
    Inventors: Stephen Brown, James Rawnick
  • Publication number: 20050030241
    Abstract: The invention concerns a multi-mode electromagnetic horn antenna that can operate over two or more distinct bands of frequencies. The horn (100) includes a throat portion (102) and an aperture (108) disposed at an end of the horn (100) opposed to the throat portion (102). A flared section (104, 106) is disposed between the throat portion and the aperture. At least one dimension of the flared section can increase in size along an axial length of the horn defined between the throat portion (102) and the aperture (108). Further, a dielectric load (103) can be disposed within the throat portion (102). The dielectric load is advantageously comprised a fluid dielectric (103).
    Type: Application
    Filed: August 7, 2003
    Publication date: February 10, 2005
    Inventors: Stephen Brown, James Rawnick