Patents by Inventor James Ryan Burgess

James Ryan Burgess has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11827356
    Abstract: An unmanned aerial vehicle (UAV) is disclosed that includes a retractable payload delivery system. The payload delivery system can lower a payload to the ground using a delivery device that secures the payload during descent and releases the payload upon reaching the ground. The location of the delivery device can be determined as it is lowered to the ground using image tracking. The UAV can include an imaging system that captures image data of the suspended delivery device and identifies image coordinates of the delivery device, and the image coordinates can then be mapped to a location. The UAV may also be configured to account for any deviations from a planned path of descent in real time to effect accurate delivery locations of released payloads.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: November 28, 2023
    Assignee: Wing Aviation LLC
    Inventors: James Ryan Burgess, Joanna Cohen
  • Publication number: 20230249822
    Abstract: An unmanned aerial vehicle (UAV) is disclosed that includes a retractable payload delivery system. The payload delivery system can lower a payload to the ground using a delivery device that secures the payload during descent and releases the payload upon reaching the ground. The location of the delivery device can be determined as it is lowered to the ground using image tracking. The UAV can include an imaging system that captures image data of the suspended delivery device and identifies image coordinates of the delivery device, and the image coordinates can then be mapped to a location. The UAV may also be configured to account for any deviations from a planned path of descent in real time to effect accurate delivery locations of released payloads.
    Type: Application
    Filed: April 13, 2023
    Publication date: August 10, 2023
    Inventors: James Ryan Burgess, Joanna Cohen
  • Patent number: 11066156
    Abstract: An aerial vehicle includes one or more propeller units operable to provide thrust for takeoff or hover flight and one or more propulsion units operable to provide thrust for forward flight. At least one propeller unit includes a shaft coupled to a motor, and a first propeller blade and a second propeller blade that are both connected to the shaft. The second propeller blade is located substantially opposite the first propeller blade, and the second propeller blade has a surface area substantially perpendicular to an axis of rotation that is greater than a corresponding surface area of the first propeller blade. While the aerial vehicle is in forward flight in a first direction and the motor is turned off, the first propeller blade and the second propeller blade are each configured to orient in a second direction that is substantially parallel to the first direction, such that the first propeller blade is oriented substantially upwind of the second propeller blade.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: July 20, 2021
    Assignee: Wing Aviation LLC
    Inventors: Parsa Dormiani, James Ryan Burgess
  • Patent number: 10853755
    Abstract: Embodiments relate to a client-facing application for interacting with a transport service that transports items via unmanned aerial vehicles (UAVs). An example graphic interface may allow a user to order items to specific delivery areas associated with their larger delivery location, and may dynamically provide status updates and other functionality during the process of fulfilling a UAV transport request.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: December 1, 2020
    Assignee: Wing Aviation LLC
    Inventors: Jonathan Lesser, Michael Bauerly, James Ryan Burgess, May Cheng, Rue Song
  • Publication number: 20200324902
    Abstract: An unmanned aerial vehicle (UAV) is disclosed that includes a retractable payload delivery system. The payload delivery system can lower a payload to the ground using a delivery device that secures the payload during descent and releases the payload upon reaching the ground. The location of the delivery device can be determined as it is lowered to the ground using image tracking. The UAV can include an imaging system that captures image data of the suspended delivery device and identifies image coordinates of the delivery device, and the image coordinates can then be mapped to a location. The UAV may also be configured to account for any deviations from a planned path of descent in real time to effect accurate delivery locations of released payloads.
    Type: Application
    Filed: June 5, 2020
    Publication date: October 15, 2020
    Inventors: James Ryan Burgess, Joanna Cohen
  • Patent number: 10710722
    Abstract: An unmanned aerial vehicle (UAV) is disclosed that includes a retractable payload delivery system. The payload delivery system can lower a payload to the ground using a delivery device that secures the payload during descent and releases the payload upon reaching the ground. The location of the delivery device can be determined as it is lowered to the ground using image tracking. The UAV can include an imaging system that captures image data of the suspended delivery device and identifies image coordinates of the delivery device, and the image coordinates can then be mapped to a location. The UAV may also be configured to account for any deviations from a planned path of descent in real time to effect accurate delivery locations of released payloads.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 14, 2020
    Assignee: Wing Aviation LLC
    Inventors: James Ryan Burgess, Joanna Cohen
  • Patent number: 10683102
    Abstract: Described herein are apparatuses that provided various features related to unmanned aerial vehicles (UAVs). An example apparatus may include, among other features, (i) a launch system for a UAV, (ii) a landing feature that is arranged on the apparatus so as to receive the UAV when the UAV returns from a flight, and (iii) a mechanical battery-replacement system that is configured to (a) remove a first battery from the UAV, and (b) after removal of the first battery, install a second battery in the UAV.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: June 16, 2020
    Assignee: Wing Aviation LLC
    Inventors: Joanna Cohen, Parsa Dormiani, Mathias Samuel Fleck, James Ryan Burgess, Sean Mullaney
  • Publication number: 20200082330
    Abstract: Embodiments relate to a client-facing application for interacting with a transport service that transports items via unmanned aerial vehicles (UAVs). An example graphic interface may allow a user to order items to specific delivery areas associated with their larger delivery location, and may dynamically provide status updates and other functionality during the process of fulfilling a UAV transport request.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 12, 2020
    Inventors: Jonathan Lesser, Michael Bauerly, James Ryan Burgess, May Cheng, Rue Song
  • Patent number: 10460279
    Abstract: Embodiments relate to a client-facing application for interacting with a transport service that transports items via unmanned aerial vehicles (UAVs). An example graphic interface may allow a user to order items to specific delivery areas associated with their larger delivery location, and may dynamically provide status updates and other functionality during the process of fulfilling a UAV transport request.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: October 29, 2019
    Assignee: Wing Aviation LLC
    Inventors: Jonathan Lesser, Michael Bauerly, James Ryan Burgess, May Cheng, Rue Song
  • Publication number: 20190248509
    Abstract: Described herein are apparatuses that provided various features related to unmanned aerial vehicles (UAVs). An example apparatus may include, among other features, (i) a launch system for a UAV, (ii) a landing feature that is arranged on the apparatus so as to receive the UAV when the UAV returns from a flight, and (iii) a mechanical battery-replacement system that is configured to (a) remove a first battery from the UAV, and (b) after removal of the first battery, install a second battery in the UAV.
    Type: Application
    Filed: February 20, 2019
    Publication date: August 15, 2019
    Inventors: Joanna Cohen, Parsa Dormiani, Mathias Samuel Fleck, James Ryan Burgess, Sean Mullaney
  • Patent number: 10239638
    Abstract: Described herein are apparatuses that provided various features related to unmanned aerial vehicles (UAVs). An example apparatus may include, among other features, (i) a launch system for a UAV, (ii) a landing feature that is arranged on the apparatus so as to receive the UAV when the UAV returns from a flight, and (iii) a mechanical battery-replacement system that is configured to (a) remove a first battery from the UAV, and (b) after removal of the first battery, install a second battery in the UAV.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: March 26, 2019
    Assignee: Wing Aviation LLC
    Inventors: Joanna Cohen, Parsa Dormiani, Mathias Samuel Fleck, James Ryan Burgess, Sean Mullaney
  • Publication number: 20190071171
    Abstract: An aerial vehicle includes one or more propeller units operable to provide thrust for takeoff or hover flight and one or more propulsion units operable to provide thrust for forward flight. At least one propeller unit includes a shaft coupled to a motor, and a first propeller blade and a second propeller blade that are both connected to the shaft. The second propeller blade is located substantially opposite the first propeller blade, and the second propeller blade has a surface area substantially perpendicular to an axis of rotation that is greater than a corresponding surface area of the first propeller blade. While the aerial vehicle is in forward flight in a first direction and the motor is turned off, the first propeller blade and the second propeller blade are each configured to orient in a second direction that is substantially parallel to the first direction, such that the first propeller blade is oriented substantially upwind of the second propeller blade.
    Type: Application
    Filed: October 29, 2018
    Publication date: March 7, 2019
    Inventors: Parsa Dormiani, James Ryan Burgess
  • Patent number: 10137982
    Abstract: An aerial vehicle includes one or more propeller units operable to provide thrust for takeoff or hover flight and one or more propulsion units operable to provide thrust for forward flight. At least one propeller unit includes a shaft coupled to a motor, and a first propeller blade and a second propeller blade that are both connected to the shaft. The second propeller blade is located substantially opposite the first propeller blade, and the second propeller blade has a surface area substantially perpendicular to an axis of rotation that is greater than a corresponding surface area of the first propeller blade. While the aerial vehicle is in forward flight in a first direction and the motor is turned off, the first propeller blade and the second propeller blade are each configured to orient in a second direction that is substantially parallel to the first direction, such that the first propeller blade is oriented substantially upwind of the second propeller blade.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: November 27, 2018
    Assignee: Wing Aviation LLC
    Inventors: Parsa Dormiani, James Ryan Burgess
  • Patent number: 10106257
    Abstract: Embodiments described herein may help to provide medical support via a fleet of unmanned aerial vehicles (UAVs). An illustrative UAV may include a housing, a payload, a line-deployment mechanism coupled to the housing and a line, and a payload-release mechanism that couples the line to the payload, wherein the payload-release mechanism is configured to release the payload from the line. The UAV may further include a control system configured to determine that the UAV is located at or near a delivery location and responsively: operate the line-deployment mechanism according to a variable deployment-rate profile to lower the payload to or near to the ground, determine that the payload is touching or is within a threshold distance from the ground, and responsively operate the payload-release mechanism to release the payload from the line.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: October 23, 2018
    Assignee: X Development LLC
    Inventors: William Graham Patrick, James Ryan Burgess, Andrew Conrad
  • Publication number: 20180222585
    Abstract: Embodiments described herein may help to provide medical support via a fleet of unmanned aerial vehicles (UAVs). An illustrative UAV may include a housing, a payload, a line-deployment mechanism coupled to the housing and a line, and a payload-release mechanism that couples the line to the payload, wherein the payload-release mechanism is configured to release the payload from the line. The UAV may further include a control system configured to determine that the UAV is located at or near a delivery location and responsively: operate the line-deployment mechanism according to a variable deployment-rate profile to lower the payload to or near to the ground, determine that the payload is touching or is within a threshold distance from the ground, and responsively operate the payload-release mechanism to release the payload from the line.
    Type: Application
    Filed: March 28, 2018
    Publication date: August 9, 2018
    Inventors: William Graham Patrick, James Ryan Burgess, Andrew Conrad
  • Patent number: 9957046
    Abstract: Embodiments described herein may help to provide medical support via a fleet of unmanned aerial vehicles (UAVs). An illustrative UAV may include a housing, a payload, a line-deployment mechanism coupled to the housing and a line, and a payload-release mechanism that couples the line to the payload, wherein the payload-release mechanism is configured to release the payload from the line. The UAV may further include a control system configured to determine that the UAV is located at or near a delivery location and responsively: operate the line-deployment mechanism according to a variable deployment-rate profile to lower the payload to or near to the ground, determine that the payload is touching or is within a threshold distance from the ground, and responsively operate the payload-release mechanism to release the payload from the line.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: May 1, 2018
    Assignee: X Development LLC
    Inventors: William Graham Patrick, James Ryan Burgess, Andrew Conrad
  • Publication number: 20180072419
    Abstract: An unmanned aerial vehicle (UAV) is disclosed that includes a retractable payload delivery system. The payload delivery system can lower a payload to the ground using a delivery device that secures the payload during descent and releases the payload upon reaching the ground. The location of the delivery device can be determined as it is lowered to the ground using image tracking. The UAV can include an imaging system that captures image data of the suspended delivery device and identifies image coordinates of the delivery device, and the image coordinates can then be mapped to a location. The UAV may also be configured to account for any deviations from a planned path of descent in real time to effect accurate delivery locations of released payloads.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 15, 2018
    Inventors: James Ryan Burgess, Joanna Cohen
  • Publication number: 20180022456
    Abstract: Embodiments described herein may help to provide medical support via a fleet of unmanned aerial vehicles (UAVs). An illustrative UAV may include a housing, a payload, a line-deployment mechanism coupled to the housing and a line, and a payload-release mechanism that couples the line to the payload, wherein the payload -release mechanism is configured to release the payload from the line. The UAV may further include a control system configured to determine that the UAV is located at or near a delivery location and responsively: operate the line-deployment mechanism according to a variable deployment-rate profile to lower the payload to or near to the ground, determine that the payload is touching or is within a threshold distance from the ground, and responsively operate the payload-release mechanism to release the payload from the line.
    Type: Application
    Filed: September 21, 2017
    Publication date: January 25, 2018
    Inventors: William Graham Patrick, James Ryan Burgess, Andrew Conrad
  • Publication number: 20170372259
    Abstract: Embodiments relate to a client-facing application for interacting with a transport service that transports items via unmanned aerial vehicles (UAVs). An example graphic interface may allow a user to order items to specific delivery areas associated with their larger delivery location, and may dynamically provide status updates and other functionality during the process of fulfilling a UAV transport request.
    Type: Application
    Filed: June 28, 2016
    Publication date: December 28, 2017
    Inventors: Jonathan Lesser, Michael Bauerly, James Ryan Burgess, May Cheng, Rue Song
  • Patent number: 9849981
    Abstract: An unmanned aerial vehicle (UAV) is disclosed that includes a retractable payload delivery system. The payload delivery system can lower a payload to the ground using a delivery device that secures the payload during descent and releases the payload upon reaching the ground. The location of the delivery device can be determined as it is lowered to the ground using image tracking. The UAV can include an imaging system that captures image data of the suspended delivery device and identifies image coordinates of the delivery device, and the image coordinates can then be mapped to a location. The UAV may also be configured to account for any deviations from a planned path of descent in real time to effect accurate delivery locations of released payloads.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: December 26, 2017
    Assignee: X Development LLC
    Inventors: James Ryan Burgess, Joanna Cohen