Patents by Inventor James S. Falcone

James S. Falcone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10024500
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: July 17, 2018
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, III, James S. Falcone, Jr., Michael Lefenfeld
  • Publication number: 20170336032
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Application
    Filed: August 9, 2017
    Publication date: November 23, 2017
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. KRUMRINE, III, James S. FALCONE, JR., Michael LEFENFELD
  • Patent number: 9791108
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: October 17, 2017
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, III, James S. Falcone, Jr., Michael Lefenfeld
  • Publication number: 20170234489
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Application
    Filed: May 4, 2017
    Publication date: August 17, 2017
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. KRUMRINE, III, James S. FALCONE, JR., Michael LEFENFELD
  • Patent number: 9677392
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The aqueous fluid comprises water. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: June 13, 2017
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, III, James S. Falcone, Jr., Michael Lefenfeld
  • Patent number: 9657549
    Abstract: Enhanced oil recovery techniques include introduction of alkali metal silicides into subterranean reservoirs to generate hydrogen gas, heat, and alkali metal silicate solutions in situ upon contact with water. The alkali metal silicides, such as sodium silicide, are used to recover hydrocarbons, including heavier crudes where viscosity and low reservoir pressure are limiting factors. Hydrogen, which is miscible with the crude oil and can beneficiate the heavier fractions into lighter fractions naturally or with addition of catalytic materials, is generated in-situ. It. Heat is also generated at the reaction site to reduce viscosity and promote crude beneficiation. The resulting alkaline silicate solution saponifies acidic crude components to form surfactants which emulsify the crude to improve mobility toward a production well. The silicate promotes profile modification passively via consumptive reactions or actively via addition of acidic gelling agents.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: May 23, 2017
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, James S. Falcone, Michael Lefenfeld
  • Patent number: 9494012
    Abstract: The invention relates to cement compositions containing a metal silicide such as an alkali metal silicide or an alkaline earth metal silicide. Upon mixing with water, the metal silicide reacts to generate hydrogen gas, a silicate, and heat—each of which is advantageous for the large variety of uses to which cements are put. The invention relates to a foamable cement composition comprising about 99.999 wt % to about 98.5 wt % of a cement, and about 0.001 wt % to about 1.5 wt % of a metal silicide or a mixture of metal silicides. Concretes and grouts containing the cement composition are also disclosed. Other embodiments provide methods for forming cement structures, including in subterranean formations and wells.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: November 15, 2016
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: James S. Falcone, Paul H. Krumrine, Michael Lefenfeld
  • Publication number: 20150191993
    Abstract: The invention relates to cement compositions containing a metal silicide such as an alkali metal silicide or an alkaline earth metal silicide. Upon mixing with water, the metal silicide reacts to generate hydrogen gas, a silicate, and heat—each of which is advantageous for the large variety of uses to which cements are put. The invention relates to a foamable cement composition comprising about 99.999 wt % to about 98.5 wt % of a cement, and about 0.001 wt % to about 1.5 wt % of a metal silicide or a mixture of metal silicides. Concretes and grouts containing the cement composition are also disclosed. Other embodiments provide methods for forming cement structures, including in subterranean formations and wells.
    Type: Application
    Filed: June 14, 2012
    Publication date: July 9, 2015
    Applicant: SiGNa Chemistry, Inc.
    Inventors: James S. Falcone, Paul H. Krumrine, Michael Lefenfeld
  • Publication number: 20140196896
    Abstract: Enhanced oil recovery techniques include introduction of alkali metal silicides into subterranean reservoirs to generate hydrogen gas, heat, and alkali metal silicate solutions in situ upon contact with water. The alkali metal silicides, such as sodium silicide, are used to recover hydrocarbons, including heavier crudes where viscosity and low reservoir pressure are limiting factors. Hydrogen, which is miscible with the crude oil and can beneficiate the heavier fractions into lighter fractions naturally or with addition of catalytic materials, is generated in-situ. It. Heat is also generated at the reaction site to reduce viscosity and promote crude beneficiation. The resulting alkaline silicate solution saponifies acidic crude components to form surfactants which emulsify the crude to improve mobility toward a production well. The silicate promotes profile modification passively via consumptive reactions or actively via addition of acidic gelling agents.
    Type: Application
    Filed: June 14, 2012
    Publication date: July 17, 2014
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Paul H. Krumrine, James S. Falcone, Michael Lefenfeld
  • Publication number: 20130341023
    Abstract: A method of hydraulic fracturing is provided which uses metal silicides to generate significant pressure inside a wellbore. The method comprises injecting a fracturing fluid and an aqueous or reacting fluid into the wellbore to react with the fracturing fluid. The fracturing fluid comprises metal silicide, which may be uncoated or coated, and hydrocarbon fluid. The aqueous fluid comprises water. The reacting fluid comprises water or a solvent. A method of removing buildup in pipelines such as subsea pipelines which uses metal silicides to generate heat and pressure inside the pipeline is also provided. The method comprises injecting an organic slug and an aqueous slug. The organic slug comprises metal silicide and hydrocarbon fluid. The aqueous slug comprises water. Alternatively, there is also provided a method for purifying flowback water produced from a hydraulic fracturing process comprising adding metal silicide to the flowback water produced from a hydraulic fracturing process.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 26, 2013
    Inventors: Paul H. KRUMRINE, III, James S. FALCONE, JR., Michael Lefenfeld
  • Patent number: 6866896
    Abstract: An electroless or electrolytic process for treating metallic surfaces is disclosed. The disclosed process exposes the metallic surface to a first medium comprising at least one silicate, and then to a second medium comprising colloidal silica (additional processing steps can be employed before, between and after exposure to the first and second mediums). The first and second mediums can be electrolytic or electroless.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: March 15, 2005
    Assignee: Elisha Holding LLC
    Inventors: Robert L. Heimann, Bruce Flint, Ravi Chandran, Jonathan L. Bass, James S. Falcone, Jr.
  • Publication number: 20040188262
    Abstract: An electroless or electrolytic process for treating metallic surfaces is disclosed. The disclosed process exposes the metallic surface to a first medium comprising at least one silicate, and then to a second medium comprising colloidal silica (additional processing steps can be employed before, between and after exposure to the first and second mediums). The first and second mediums can be electrolytic or electroless.
    Type: Application
    Filed: April 15, 2004
    Publication date: September 30, 2004
    Inventors: Robert L. Heimann, Bruce Flint, Ravi Chandran, Jonathan L. Bass, James S. Falcone
  • Publication number: 20030165627
    Abstract: An electroless or electrolytic process for treating metallic surfaces is disclosed. The disclosed process exposes the metallic surface to a first medium comprising at least one silicate, and then to a second medium comprising colloidal silica (additional processing steps can be employed before, between and after exposure to the first and second mediums). The first and second mediums can be electrolytic or electroless.
    Type: Application
    Filed: February 5, 2003
    Publication date: September 4, 2003
    Inventors: Robert L. Heimann, Bruce Flint, Ravi Chandran, Jonathan L. Bass, James S. Falcone
  • Patent number: 4528276
    Abstract: Alkali metal silicates and zeolites can be agglomerated to form granules that are of particular value in detergents. These agglomerates are formed when hydrated alkali metal silicate particles are tumbled with hydrated zeolites of small particle size while moisture and then heat are introduced to achieve granulation. The product is a free-flowing granular material has numerous desirable characteristics for detergents.
    Type: Grant
    Filed: January 3, 1983
    Date of Patent: July 9, 1985
    Assignee: PQ Corporation
    Inventors: Thomas C. Cambell, Howard S. Sherry, George C. Schweiker, James S. Falcone, Jr., Robert H. Sams, deceased
  • Patent number: 4347890
    Abstract: A method for binding particulate materials which involves mixing the particulate material with a solution containing lithiumions, blending sodium silicate into the mixture and subsequently shaping the mixture to the desired form and curing same by microwave radiation.
    Type: Grant
    Filed: March 9, 1981
    Date of Patent: September 7, 1982
    Assignee: PQ Corporation
    Inventors: Iris B. Ailin-Pyzik, James S. Falcone, Jr.
  • Patent number: 4230496
    Abstract: Aqueous organic ammonium silicate-alkali metal silicate combination vehicles for zinc-rich, corrosion-resistant paints are improved by the addition of organosilicone-silicate polymers. The improvement is manifested by increased adhesion to poorly prepared metal surfaces and harder paint films.
    Type: Grant
    Filed: September 22, 1978
    Date of Patent: October 28, 1980
    Assignee: PQ Corporation
    Inventors: James S. Falcone, Jr., Robert W. Spencer