Patents by Inventor James S. Little

James S. Little has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11224746
    Abstract: In electrically stimulating neural tissue it is important to prevent over stimulation and unbalanced stimulation, which would cause damage to the neural tissue, the electrode, or both. It is critical that neural tissue is not subjected to any direct current or alternating current above a safe threshold. Further, it is important to identify defective electrodes, as continued use may result in neural damage and further electrode damage. The present invention presents system and stimulator control mechanisms to prevent damage to neural tissue.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: January 18, 2022
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Kelly Hobart McClure, James S. Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, David Daomin Zhou, Pishoy Maksy
  • Patent number: 11173306
    Abstract: In electrically stimulating neural tissue it is important to prevent over stimulation and unbalanced stimulation, which would cause damage to the neural tissue, the electrode, or both. It is critical that neural tissue is not subjected to any direct current or alternating current above a safe threshold. Further, it is important to identify defective electrodes, as continued use may result in neural damage and further electrode damage. The present invention presents system and stimulator control mechanisms to prevent damage to neural tissue.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: November 16, 2021
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Kelly Hobart McClure, James S. Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, David Daomin Zhou, Pishoy Maksy
  • Patent number: 11173305
    Abstract: In electrically stimulating neural tissue it is important to prevent over stimulation and unbalanced stimulation, which would cause damage to the neural tissue, the electrode, or both. It is critical that neural tissue is not subjected to any direct current or alternating current above a safe threshold. Further, it is important to identify defective electrodes, as continued use may result in neural damage and further electrode damage. The present invention presents system and stimulator control mechanisms to prevent damage to neural tissue.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: November 16, 2021
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Kelly Hobart McClure, James S. Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, David Daomin Zhou, Pishoy Maksy
  • Patent number: 11129984
    Abstract: In electrically stimulating neural tissue it is important to prevent over stimulation and unbalanced stimulation, which would cause damage to the neural tissue, the electrode, or both. It is critical that neural tissue is not subjected to any direct current or alternating current above a safe threshold. Further, it is important to identify defective electrodes, as continued use may result in neural damage and further electrode damage. The present invention presents system and stimulator control mechanisms to prevent damage to neural tissue.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: September 28, 2021
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Kelly Hobart McClure, James S. Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, David Daomin Zhou, Pishoy Maksy
  • Patent number: 10617868
    Abstract: An implantable device having a biocompatible hermetic package made from a biocompatible electrically non-conductive substrate and a cover bonded to the substrate. In integrated circuit and passive circuits all bonded directly to the substrate.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: April 14, 2020
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Jerry Ok, Robert J Greenberg, Neil Hamilton Talbot, James S Little, Rongqing Dai, Jordan Matthew Neysmith, Kelly H McClure
  • Publication number: 20190366089
    Abstract: In electrically stimulating neural tissue it is important to prevent over stimulation and unbalanced stimulation, which would cause damage to the neural tissue, the electrode, or both. It is critical that neural tissue is not subjected to any direct current or alternating current above a safe threshold. Further, it is important to identify defective electrodes, as continued use may result in neural damage and further electrode damage. The present invention presents system and stimulator control mechanisms to prevent damage to neural tissue.
    Type: Application
    Filed: July 18, 2019
    Publication date: December 5, 2019
    Applicant: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Kelly Hobart McClure, James S. Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, David Daomin Zhou, Pishoy Maksy
  • Publication number: 20190366091
    Abstract: In electrically stimulating neural tissue it is important to prevent over stimulation and unbalanced stimulation, which would cause damage to the neural tissue, the electrode, or both. It is critical that neural tissue is not subjected to any direct current or alternating current above a safe threshold. Further, it is important to identify defective electrodes, as continued use may result in neural damage and further electrode damage. The present invention presents system and stimulator control mechanisms to prevent damage to neural tissue.
    Type: Application
    Filed: July 18, 2019
    Publication date: December 5, 2019
    Applicant: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Kelly Hobart McClure, James S. Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, David Daomin Zhou, Pishoy Maksy
  • Publication number: 20190366092
    Abstract: In electrically stimulating neural tissue it is important to prevent over stimulation and unbalanced stimulation, which would cause damage to the neural tissue, the electrode, or both. It is critical that neural tissue is not subjected to any direct current or alternating current above a safe threshold. Further, it is important to identify defective electrodes, as continued use may result in neural damage and further electrode damage. The present invention presents system and stimulator control mechanisms to prevent damage to neural tissue.
    Type: Application
    Filed: July 18, 2019
    Publication date: December 5, 2019
    Applicant: Second Sight Medical Products, Inc.
    Inventors: Robert J Greenberg, Kelly Hobart McClure, James S. Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, David Daomin Zhou, Pishoy Maksy
  • Publication number: 20190366090
    Abstract: In electrically stimulating neural tissue it is important to prevent over stimulation and unbalanced stimulation, which would cause damage to the neural tissue, the electrode, or both. It is critical that neural tissue is not subjected to any direct current or alternating current above a safe threshold. Further, it is important to identify defective electrodes, as continued use may result in neural damage and further electrode damage. The present invention presents system and stimulator control mechanisms to prevent damage to neural tissue.
    Type: Application
    Filed: July 18, 2019
    Publication date: December 5, 2019
    Applicant: Second Sight Medical Products, Inc.
    Inventors: Robert J Greenberg, Kelly Hobart McClure, James S. Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, David Daomin Zhou, Pishoy Maksy
  • Publication number: 20190336769
    Abstract: In electrically stimulating neural tissue it is important to prevent over stimulation and unbalanced stimulation, which would cause damage to the neural tissue, the electrode, or both. It is critical that neural tissue is not subjected to any direct current or alternating current above a safe threshold. Further, it is important to identify defective electrodes, as continued use may result in neural damage and further electrode damage. The present invention presents system and stimulator control mechanisms to prevent damage to neural tissue.
    Type: Application
    Filed: July 18, 2019
    Publication date: November 7, 2019
    Applicant: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Kelly Hobart McClure, James S. Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tieng Tang, Sumit Yadav, Chunhong Zhou, David Daomin Zhou, Pishoy Maksy
  • Patent number: 10406361
    Abstract: In electrically stimulating neural tissue it is important to prevent over stimulation and unbalanced stimulation which would cause damage to the neural tissue, the electrode, or both. It is critical that neural tissue is not subjected to any direct current or alternating current above a safe threshold. Further, it is important to identify defective electrodes as continued use may result in neural damage and further electrode damage. The present invention presents system and stimulator control mechanisms to prevent damage to neural tissue.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: September 10, 2019
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Kelly Hobart McClure, James S. Little, Rongqing Dai, Arup Roy, Richard Augustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, David Daomin Zhou, Pishoy Maksy
  • Patent number: 10016590
    Abstract: The present invention provides a flexible circuit electrode array adapted for neural stimulation, comprising: a polymer base layer; metal traces deposited on the polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on the polymer base layer and the metal traces at least one tack opening. The present invention provides further a method of making a flexible circuit electrode array comprising depositing a polymer base layer; depositing metal on the polymer base layer; patterning the metal to form metal traces; depositing a polymer top layer on the polymer base layer and the metal traces; and preparing at least one tack opening.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: July 10, 2018
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J Greenberg, Jordan M Neysmith, James S Little, Brian V Mech, Neil H Talbot
  • Publication number: 20180169413
    Abstract: In electrically stimulating neural tissue it is important to prevent over stimulation and unbalanced stimulation which would cause damage to the neural tissue, the electrode, or both. It is critical that neural tissue is not subjected to any direct current or alternating current above a safe threshold. Further, it is important to identify defective electrodes as continued use may result in neural damage and further electrode damage. The present invention presents system and stimulator control mechanisms to prevent damage to neural tissue.
    Type: Application
    Filed: February 1, 2018
    Publication date: June 21, 2018
    Applicant: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Kelly Hobart McClure, James S. Little, Rongqing Dal, Arup Roy, Richard Augustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, David Daomin Zhou, Pishoy Maksy
  • Patent number: 9949376
    Abstract: The present invention consists of an implantable device with at least one package that houses electronics that sends and receives data or signals, and optionally power, from an external system through at least one coil attached to at least one package and processes the data, including recordings of neural activity, and delivers electrical pulses to neural tissue through at least one array of multiple electrodes that are attached to the at least one package. The device is adapted to electrocorticographic (ECoG) and local field potential (LFP) signals. A brain stimulator, preferably a deep brain stimulator, stimulates the brain in response to neural recordings in a closed feedback loop. The device is advantageous in providing neuromodulation therapies for neurological disorders such as chronic pain, post traumatic stress disorder (PTSD), major depression, or similar disorders.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: April 17, 2018
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J Greenberg, Neil H Talbot, James S Little
  • Patent number: 9907949
    Abstract: This invention is a retinal electrode array assembly and methods of using the same that facilitate surgical implant procedures by providing the operating surgeon with visual references and grasping means and with innovations that reduce actual and potential damage to the retina and the surrounding tissue.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: March 6, 2018
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Alfred E. Mann, James S. Little, Karl-Heinz Ihrig, Brian V. Mech, Neil H. Talbot, DaoMin Zhou
  • Publication number: 20170291028
    Abstract: An implantable device having a biocompatible hermetic package made from a biocompatible electrically non-conductive substrate and a cover bonded to the substrate. In integrated circuit and passive circuits all bonded directly to the substrate.
    Type: Application
    Filed: June 21, 2017
    Publication date: October 12, 2017
    Inventors: Jerry Ok, Robert J. Greenberg, Neil hamilton Talbot, James S. Little, Rongqing Dai, Jordan Matthew Neysmith, Kelly H. McClure
  • Patent number: 9713716
    Abstract: An implantable device, including a first electrically non-conductive substrate; a plurality of electrically conductive vias through the first electrically non-conductive substrate; a flip-chip multiplexer circuit attached to the electrically non-conductive substrate using conductive bumps and electrically connected to at least a subset of the plurality of electrically conductive vias; a flip-chip driver circuit attached to the flip-chip multiplexer circuit using conductive bumps; a second electrically non-conductive substrate attached to the flip-chip driver circuit using conductive bumps; discrete passives attached to the second electrically non-conductive substrate; and a cover bonded to the first electrically non-conductive substrate, the cover, the first electrically non-conductive substrate and the electrically conductive vias forming a hermetic package.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: July 25, 2017
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Jerry Ok, Robert J Greenberg, Neil Hamilton Talbot, James S Little, Rongqing Dai, Jordan Matthew Neysmith, Kelly H McClure
  • Publication number: 20170203097
    Abstract: The present invention provides a flexible circuit electrode array adapted for neural stimulation, comprising: a polymer base layer; metal traces deposited on the polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on the polymer base layer and the metal traces at least one tack opening. The present invention provides further a method of making a flexible circuit electrode array comprising depositing a polymer base layer; depositing metal on the polymer base layer; patterning the metal to form metal traces; depositing a polymer top layer on the polymer base layer and the metal traces; and preparing at least one tack opening.
    Type: Application
    Filed: March 31, 2017
    Publication date: July 20, 2017
    Applicant: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Jordan M. Neysmith, James S. Little, Brian V. Mech, Neil H. Talbot
  • Patent number: 9656059
    Abstract: A cochlear stimulation device comprising an electrode array designed to provide enhanced charge injection capacity necessary for neural stimulation. The electrode array comprises electrodes with high surface area or a fractal geometry and correspondingly high electrode capacitance and low electrical impedance. The resultant electrodes have a robust surface and sufficient mechanical strength to withstand physical stress vital for long term stability. The device further comprises wire traces having a multilayer structure which provides a reduced width for the conducting part of the electrode array. The cochlear prosthesis is attached by a grommet to the cochleostomy that is made from a single piece of biocompatible polymer. The device, designed to achieve optimum neural stimulation by appropriate electrode design, is a significant improvement over commercially available hand-built devices.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: May 23, 2017
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J Greenberg, David D Zhou, Jordan Matthew Neysmith, Kelly H McClure, Jianing Wei, Neil H Talbot, James S Little
  • Patent number: 9545517
    Abstract: The present disclosure describes a video device suitable to be word on the head of a user in the form of glasses. The glasses frame supports a camera, active electronics and a battery.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: January 17, 2017
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J Greenberg, Mark S Humayun, Rajat N Agrawal, Kevin Wilkin, James S Little, Da-Yu Chang