Patents by Inventor James Sherwood Page

James Sherwood Page has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11086295
    Abstract: Methods, systems, and computer programs for multi-tool additive manufacturing include a method including: slicing a received model into a series of layers; determining one or more separation starting points, each being a location of two adjoining portions of the model that are to be manufactured by respective additive manufacturing robots; and determining an offset for each of the one or more separation starting points in each layer of the series of layers based on a threshold acceptable print time, each offset in a layer determining a seam location in the layer that is different from a seam location in at least one adjacent layer in the series of layers, and seam offsets determined for the series of layers increase an estimated print time, for manufacturing of the series of layers by the two or more additive manufacturing robots, to no more than the threshold acceptable print time.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: August 10, 2021
    Assignee: Autodesk, Inc.
    Inventors: Gregory David Meess, Kenneth Lawrence Mejia, Matthew Hovanec, Andreas Linas Bastian, Cory Mark Bloome, Peter J. Schmehl, Joseph Isaac Sadusk, James Sherwood Page
  • Patent number: 10906291
    Abstract: A fused filament fabrication three dimensional printing system includes a build platform, an extruder for one or more deposition materials, the extruder including at least one nozzle movable relative to the build platform, and a controller configured to control the relative movement between the build platform and the nozzle, and to cause material to be extruded out of the nozzle to form a 3D object on the build platform. The build platform includes a first plate on which the 3D object is formed, a second plate that is positioned vertically below the first plate and defines at least one gap between the first and second plates, and a heating element that is configured to heat the second plate. The first plate defines at least one opening that is configured to allow passage of material extruded from the nozzle into the at least one gap between the first and second plates.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: February 2, 2021
    Assignee: Autodesk, Inc.
    Inventors: Cory Mark Bloome, James Sherwood Page, Michael Anthony Crockett, Gregory Daniel Friedland, Andreas Linas Bastian
  • Patent number: 10899071
    Abstract: A system for fabricating an object includes an extruder for one or more deposition materials. The extruder has at least one nozzle with a nozzle tip that includes an exit orifice and has a width that is equal to or larger than a width of the exit orifice. The system also includes a controller coupled with the extruder, the controller configured to apply a correction factor that has been calculated for a path of the nozzle based on a slope of a surface of an object to be fabricated. The correction factor for a positive slope is different from that for a negative slope. The extruder is configured to cause movement of the nozzle along the path to deposit material on the slope of the surface of the object, and the correction factor removes differences in thickness of the deposited material caused by the slope in relation to the path.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: January 26, 2021
    Assignee: Autodesk, Inc.
    Inventor: James Sherwood Page
  • Publication number: 20200233399
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for a multi-tool additive manufacturing system that executes in a three-dimensional build volume. In one aspect, a system includes a build platform; a support; a first robot coupled with the support and configured to operate in a build volume defined by the build platform, wherein the first robot includes a first additive manufacturing tool; a second robot coupled with the support and configured to operate in the build volume, wherein the second robot includes a second additive manufacturing tool; wherein the first robot and the second robot are programmed to coordinate simultaneous application; and wherein a first tool path of the first additive manufacturing tool in the first region abuts or overlaps with a second tool path of the second additive manufacturing tool in the second region so as to form a bond.
    Type: Application
    Filed: April 9, 2020
    Publication date: July 23, 2020
    Inventors: Gregory David Meess, Kenneth Lawrence Mejia, Matthew Hovanec, Andreas Linas Bastian, Cory Mark Bloome, Peter J. Schmehl, Joseph Isaac Sadusk, James Sherwood Page
  • Patent number: 10620611
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for a multi-tool additive manufacturing system that executes in a three-dimensional build volume. In one aspect, a system includes a build platform; a support; a first robot coupled with the support and configured to operate in a build volume defined by the build platform, wherein the first robot includes a first additive manufacturing tool; a second robot coupled with the support and configured to operate in the build volume, wherein the second robot includes a second additive manufacturing tool; wherein the first robot and the second robot are programmed to coordinate simultaneous application; and wherein a first tool path of the first additive manufacturing tool in the first region abuts or overlaps with a second tool path of the second additive manufacturing tool in the second region so as to form a bond.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: April 14, 2020
    Assignee: Autodesk, Inc.
    Inventors: Gregory David Meess, Kenneth Lawrence Mejia, Matthew Hovanec, Andreas Linas Bastian, Cory Mark Bloome, Peter J. Schmehl, Joseph Isaac Sadusk, James Sherwood Page
  • Patent number: 10518475
    Abstract: A controller of an additive manufacturing system including an extruder nozzle is programmed to: cause the extruder nozzle to deposit one or more first material segments with at least one first locking portion having a first shape; and cause the extruder nozzle to deposit one or more second material segments with at least one second locking portion having a second shape; wherein the second shape of the at least one second locking portion engages with the first shape of the at least one first locking portion, whereby the at least one second locking portion forms an interlock with the at least one first locking portion.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: December 31, 2019
    Assignee: Autodesk, Inc.
    Inventor: James Sherwood Page
  • Patent number: 10481586
    Abstract: A hot end associated with an extruder for a Fused Filament Fabrication (FFF) three dimensional (3D) printer includes, in at least one aspect of the subject matter described in this specification: a heater; a temperature sensor coupled with the heater; an FFF material delivery channel; a heat sink coupled with the FFF material delivery channel; a nozzle coupled with the FFF material delivery channel and with the heater, the nozzle having a total included angle of less than or equal to sixty degrees and greater than or equal to ten degrees, with respect to a nozzle target point; and a cooling delivery system for at least the heat sink; where the heat sink, the heater, the temperature sensor, the FFF material delivery channel, the nozzle, and the cooling delivery system are all contained within a volume defined by the total included angle with respect to the nozzle target point.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: November 19, 2019
    Assignee: Autodesk, Inc.
    Inventors: James Sherwood Page, Peter J. Schmehl, Cory Mark Bloome, Aljosa Kemperle
  • Patent number: 10380545
    Abstract: Methods, systems, and apparatus include computer programs encoded on a computer-readable storage medium, including a method for suggesting products from available parts. A plurality of available parts in an inventory is identified, including identifying at least one assembly of plural individual parts or sub-assemblies. For each assembly, plural sub-assemblies or individual parts included in a respective assembly are determined. An inventory list is created that includes the plurality of available parts, the at least one assembly, and the determined sub-assemblies or individual parts of an assembly. An inventory of products is identified that constitute assemblies. Each product in the inventory of products has a respective parts list identifying parts required to build the product. The inventory list is evaluated including comparing the inventory list to the inventory of products to locate candidate products constructible using the elements included in the inventory list. Product suggestions are output.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: August 13, 2019
    Assignee: Autodesk, Inc.
    Inventors: James Sherwood Page, Gordon Kurtenbach, Mary Hope McQuiston, Hans Kellner, Anthony Christopher Kipkirui Yegon Ruto
  • Publication number: 20180345376
    Abstract: A system for fabricating an object includes an extruder for one or more deposition materials. The extruder has at least one nozzle with a nozzle tip that includes an exit orifice and has a width that is equal to or larger than a width of the exit orifice. The system also includes a controller coupled with the extruder, the controller configured to apply a correction factor that has been calculated for a path of the nozzle based on a slope of a surface of an object to be fabricated. The correction factor for a positive slope is different from that for a negative slope. The extruder is configured to cause movement of the nozzle along the path to deposit material on the slope of the surface of the object, and the correction factor removes differences in thickness of the deposited material caused by the slope in relation to the path.
    Type: Application
    Filed: June 25, 2018
    Publication date: December 6, 2018
    Inventor: James Sherwood Page
  • Patent number: 10076880
    Abstract: A system for fabricating an object includes an extruder for one or more deposition materials having at least one nozzle and a movable support for the nozzle. The nozzle has a nozzle axis and is rotatably attached to the movable support via a connector that is actuatable relative to the movable support to change an angular orientation of the nozzle axis, thus varying an angle between the nozzle axis and a deposition surface. The system also includes a controller that can apply a correction factor calculated for a path of the nozzle when an acute angle is formed between the nozzle axis and the deposition surface, the correction factor for moving toward the acute angle being different from that when moving away from it. The correction factor removes differences in thickness of the deposited material caused by variations in the angle formed between the nozzle axis and the deposition surface.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: September 18, 2018
    Assignee: Autodesk, Inc.
    Inventor: James Sherwood Page
  • Publication number: 20180250748
    Abstract: A method includes independently controlling a feed rate for each of at least two different input materials for three dimensional (3D) printing to generate a processed material that varies continuously in composition along at least a portion of its length, adding syncing features to the processed material at specific locations of the processed material, and creating data that coordinates the specific locations of the processed material with the continuous variation in composition of the processed material, wherein the data and the syncing features are useable by a 3D printer to synchronize the continuous variation in composition of the processed material with volumetric or surface locations of an object during 3D printing of the object using the processed material.
    Type: Application
    Filed: March 2, 2018
    Publication date: September 6, 2018
    Inventor: James Sherwood Page
  • Publication number: 20180253080
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for a multi-tool additive manufacturing system that executes in a three-dimensional build volume. In one aspect, a system includes a build platform; a support; a first robot coupled with the support and configured to operate in a build volume defined by the build platform, wherein the first robot includes a first additive manufacturing tool; a second robot coupled with the support and configured to operate in the build volume, wherein the second robot includes a second additive manufacturing tool; wherein the first robot and the second robot are programmed to coordinate simultaneous application; and wherein a first tool path of the first additive manufacturing tool in the first region abuts or overlaps with a second tool path of the second additive manufacturing tool in the second region so as to form a bond.
    Type: Application
    Filed: September 9, 2016
    Publication date: September 6, 2018
    Inventors: Gregory David Meess, Kenneth Lawrence Mejia, Matthew Hovanec, Andreas Linas Bastian, Cory Mark Bloome, Peter J. Schmehl, Joseph Isaac Sadusk, James Sherwood Page
  • Patent number: 10005126
    Abstract: A system for fabricating an object includes an extruder for one or more deposition materials. The extruder has at least one nozzle with a nozzle tip that includes an exit orifice and has a width that is equal to or larger than a width of the exit orifice. The system also includes a controller coupled with the extruder, the controller configured to apply a correction factor that has been calculated for a path of the nozzle based on a slope of a surface of an object to be fabricated. The correction factor for a positive slope is different from that for a negative slope. The extruder is configured to cause movement of the nozzle along the path to deposit material on the slope of the surface of the object, and the correction factor removes differences in thickness of the deposited material caused by the slope in relation to the path.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: June 26, 2018
    Assignee: Autodesk, Inc.
    Inventor: James Sherwood Page
  • Patent number: 9895841
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining 3D printing customizations for a user. One of the methods includes receiving data indicating a selection of a product design by a user for creation of a three-dimensional product that includes a plurality of attributes, determining a style which includes values for some of the plurality of attributes and that is associated with the user, for each of the plurality of attributes determining whether the style includes a value for the respective attribute, and upon determining that the style includes a value for the respective attribute, customizing the product design using the value for the respective attribute, or upon determining that the style does not include a value for the respective attribute, customizing the product design using a default value for the respective attribute, and providing data for the customized product design for the three-dimensional product.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: February 20, 2018
    Assignee: Autodesk, Inc.
    Inventor: James Sherwood Page
  • Publication number: 20180015674
    Abstract: A controller of an additive manufacturing system including an extruder nozzle is programmed to: cause the extruder nozzle to deposit one or more first material segments with at least one first locking portion having a first shape; and cause the extruder nozzle to deposit one or more second material segments with at least one second locking portion having a second shape; wherein the second shape of the at least one second locking portion engages with the first shape of the at least one first locking portion, whereby the at least one second locking portion forms an interlock with the at least one first locking portion.
    Type: Application
    Filed: September 28, 2017
    Publication date: January 18, 2018
    Inventor: James Sherwood Page
  • Patent number: 9796140
    Abstract: A method includes: providing a matrix material and a fiber material separate from the matrix material to a fused deposition modelling (FDM) three dimensional (3D) printer; and delivering the matrix material and the fiber material to a printing location of the FDM 3D printer while maintaining separation of the fiber material from the matrix material up to the printing location of the FDM 3D printer, wherein the delivering includes melting the matrix material and embedding the fiber material within the matrix material. Further, a system includes: a build platform; and two or more tools associated with the build platform; wherein the two or more tools are configured and arranged with respect to the build platform to add matrix material and fiber material in non-planar layers to build the object.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: October 24, 2017
    Assignee: Autodesk, Inc.
    Inventor: James Sherwood Page
  • Publication number: 20170190120
    Abstract: A fused filament fabrication three dimensional printing system includes a build platform, an extruder for one or more deposition materials, the extruder including at least one nozzle movable relative to the build platform, and a controller configured to control the relative movement between the build platform and the nozzle, and to cause material to be extruded out of the nozzle to form a 3D object on the build platform. The build platform includes a first plate on which the 3D object is formed, a second plate that is positioned vertically below the first plate and defines at least one gap between the first and second plates, and a heating element that is configured to heat the second plate. The first plate defines at least one opening that is configured to allow passage of material extruded from the nozzle into the at least one gap between the first and second plates.
    Type: Application
    Filed: October 28, 2016
    Publication date: July 6, 2017
    Inventors: Cory Mark Bloome, James Sherwood Page, Michael Anthony Crockett, Gregory Daniel Friedland, Andreas Linas Bastian
  • Patent number: 9669586
    Abstract: Additive manufacturing systems and apparatus include, in one aspect, a material deposition system including an extruder for deposition materials, the extruder including two or more material entry ports, a mixing chamber, and an exit orifice; and a controller coupled with the extruder to dynamically change delivery rates of the deposition materials to be mixed in the mixing chamber before flowing from the exit orifice; wherein the controller combines a desired volume flow rate of material to flow from the exit orifice with a mix ratio to specify the delivery rates of the deposition materials. The system can include filament drive systems to feed the thermoplastic materials in filament form into the entry ports, and the controller can dynamically change the mix ratio when operating the filament drive systems to control one or more properties of the material to flow from the exit orifice.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: June 6, 2017
    Assignee: Autodesk, Inc.
    Inventor: James Sherwood Page
  • Publication number: 20170106601
    Abstract: A system for fabricating an object includes an extruder for one or more deposition materials having at least one nozzle and a movable support for the nozzle. The nozzle has a nozzle axis and is rotatably attached to the movable support via a connector that is actuatable relative to the movable support to change an angular orientation of the nozzle axis, thus varying an angle between the nozzle axis and a deposition surface. The system also includes a controller that can apply a correction factor calculated for a path of the nozzle when an acute angle is formed between the nozzle axis and the deposition surface, the correction factor for moving toward the acute angle being different from that when moving away from it. The correction factor removes differences in thickness of the deposited material caused by variations in the angle formed between the nozzle axis and the deposition surface.
    Type: Application
    Filed: December 23, 2016
    Publication date: April 20, 2017
    Inventor: James Sherwood Page
  • Patent number: D813918
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: March 27, 2018
    Assignee: Autodesk, Inc.
    Inventors: James Sherwood Page, Cory Mark Bloome