Patents by Inventor James Spanswick

James Spanswick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110082230
    Abstract: A procedure for improved temperature control in controlled radical polymerization processes is disclosed. The procedure is directed at controlling the concentration of the persistent radical in ATRP and NMP polymerizations procedures and the concentration of radicals in a RAFT polymerization process by feeding a reducing agent or radical precursor continuously or intermittently to the reaction medium through one of more ports.
    Type: Application
    Filed: December 18, 2009
    Publication date: April 7, 2011
    Inventors: Wojciech Jakubowski, James Spanswick
  • Publication number: 20110065875
    Abstract: Polymerization processes of the present invention comprise low catalyst concentration. Embodiments include a polymerization process comprising polymerizing free radically (co)polymerizable monomers in a polymerization medium comprising one or more radically (co)polymerizable monomers, a transition metal catalyst complex capable of participating in a one electron redox reaction with an ATRP initiator; a free radical initiator; and an ATRP initiator; (wherein the concentration of transition metal catalyst complex in the polymerization medium is less than 100 ppm). Further embodiments include a polymerization process, comprising polymerizing one or more radically (co)polymerizable monomers in the presence of at least one transition metal catalyst complex; an ATRP initiator; and a reducing agent; wherein the transition metal catalyst complex is present at less than 10?3 mole compared to the moles of radically transferable atoms or groups present on the ATRP initiator.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 17, 2011
    Inventors: Krzysztof Matyjaszewski, Wojciech Jakubowski, James Spanswick
  • Publication number: 20110060107
    Abstract: The process of the present invention is directed toward conducting highly selective, high yield post polymerization reactions on polymers to prepare functionalized polymers. An embodiment of the present invention comprises conducting click chemistry reactions on polymers. Preferably, the polymers were prepared by controlled polymerization processes. Therefore, embodiments of the present invention comprise processes for the preparation of polymers comprising conducting a click chemistry reaction on a functional group attached to a polymer, wherein the polymer has a molecular weight distribution of less than 2.0. The functional polymers may be prepared by converting an attached functional unit on the polymer thereby providing site specific functional materials, site specific functional materials comprising additional functionality, or chain extended functional materials.
    Type: Application
    Filed: September 8, 2010
    Publication date: March 10, 2011
    Applicant: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Brent S. Sumerlin, Nicolay V. Tsarevsky, James Spanswick
  • Patent number: 7893174
    Abstract: Embodiments of the polymerization process of the present invention are directed to polymerizing free radically polymerizable monomers in the presence of a polymerization medium initially comprising at least one transition metal catalyst and an atom transfer radical polymerization initiator. The polymerization medium may additionally comprise a reducing agent. The reducing agent may be added initially or during the polymerization process in a continuous or intermittent manner. The polymerization process may further comprise reacting the reducing agent with at least one of the transition metal catalyst in an oxidized state and a compound comprising a radically transferable atom or group to form a compound that does not participate significantly in control of the polymerization process.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: February 22, 2011
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Wojciech Jakubowski, Ke Min, James Spanswick, Nicolay V. Tsarevsky
  • Patent number: 7893173
    Abstract: Polymerization processes of the present invention comprise low catalyst concentration. Embodiments include a polymerization process comprising polymerizing free radically (co)polymerizable monomers in a polymerization medium comprising one or more radically (co)polymerizable monomers, a transition metal catalyst complex capable of participating in a one electron redox reaction with an ATRP initiator; a free radical initiator; and an ATRP initiator; (wherein the concentration of transition metal catalyst complex in the polymerization medium is less than 100 ppm). Further embodiments include a polymerization process, comprising polymerizing one or more radically (co)polymerizable monomers in the presence of at least one transition metal catalyst complex; and an ATRP initiator; and a reducing agent; wherein the transition metal catalyst complex is present at less than 10?3 mole compared to the moles of radically transferable atoms or groups present on the ATRP initiator.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: February 22, 2011
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Wojciech Jakubowski, James Spanswick
  • Publication number: 20100273949
    Abstract: A polymer composition comprising star macromolecules is provided. Each star macromolecule has a core and five or more arms, wherein the number of arms within a star macromolecule varies across the composition of star molecules. The arms on a star are covalently attached to the core of the star; each arm comprises one or more (co)polymer segments; and at least one arm and/or at least one segment exhibits a different solubility from at least one other arm or one other segment, respectively, in a reference liquid of interest.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 28, 2010
    Inventors: Wojciech Jakubowski, Patrick McCarthy, Nicolay Tsarevsky, James Spanswick
  • Publication number: 20100273906
    Abstract: The present disclosure describes a two-step batch dispersion polymerization process for the preparation of substantially uniformed-sized functional (co)polymer particles. The first step of the process includes polymerizing at least one first radically (co)polymerizable monomer by a free radical polymerization process to form a (co)polymer in a stable colloidal dispersion and the second step includes polymerizing the at first radically (co)polymerizable monomer or an additional radically (co)polymerizable monomer in the stable colloidal dispersion by a living/controlled radical (co)polymerization process.
    Type: Application
    Filed: May 23, 2008
    Publication date: October 28, 2010
    Inventors: Krzysztof Matyjaszewski, Ke Min, James Spanswick
  • Patent number: 7795355
    Abstract: The process of the present invention is directed toward conducting highly selective, high yield post polymerization reactions on polymers to prepare functionalized polymers. An embodiment of the present invention comprises conducting click chemistry reactions on polymers. Preferably, the polymers were prepared by controlled polymerization processes. Therefore, embodiments of the present invention comprise processes for the preparation of polymers comprising conducting a click chemistry reaction on a functional group attached to a polymer, wherein the polymer has a molecular weight distribution of less than 2.0. The functional polymers may be prepared by converting an attached functional unit on the polymer thereby providing site specific functional materials, site specific functional materials comprising additional functionality, or chain extended functional materials.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: September 14, 2010
    Assignee: Carnegie Mellon University
    Inventors: Krzyszlof Matyjaszewski, Brent S. Sumerlin, Nicolay V. Tsarevsky, James Spanswick
  • Publication number: 20100143286
    Abstract: Functional gel particle formed from a crosslinked polymeric network including a fraction of stable crosslinks and a second fraction of cleavable crosslinks are disclosed. Functional compounds may be chemically or physically encapsulated within and/or released from the gel particle by selective cleavage of the cleavable crosslinks. The functional compounds may be delivered and released to a pre-selected target site. Peripheral or other accessible functionality on the surface of the gel particle allows attachment of a surface reactive agent, thereby modifying one or more surface properties of the gel particle. Processes of preparing the gel particles and processes of delivering the functional compounds to a target site are also disclosed.
    Type: Application
    Filed: October 9, 2007
    Publication date: June 10, 2010
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Krzystof Matyjaszewski, Ke Min, Jung Kwon Oh, James Spanswick, Nicolay V. Tsarevsky
  • Publication number: 20090312505
    Abstract: Polymerization processes of the present invention comprise low catalyst concentration. Embodiments include a polymerization process comprising polymerizing free radically (co)polymerizable monomers in a polymerization medium comprising one or more radically (co)polymerizable monomers, a transition metal catalyst complex capable of participating in a one electron redox reaction with an ATRP initiator; a free radical initiator; and an ATRP initiator; (wherein the concentration of transition metal catalyst complex in the polymerization medium is less than 100 ppm). Further embodiments include a polymerization process, comprising polymerizing one or more radically (co)polymerizable monomers in the presence of at least one transition metal catalyst complex; and an ATRP initiator; and a reducing agent; wherein the transition metal catalyst complex is present at less than 10?3 mole compared to the moles of radically transferable atoms or groups present on the ATRP initiator.
    Type: Application
    Filed: August 28, 2006
    Publication date: December 17, 2009
    Inventors: Krzysztof Matyjaszewski, Wojciech Jakubowski, James Spanswick
  • Publication number: 20090171024
    Abstract: The present invention is directed towards a polymerization process for the preparation of block copolymers. In an embodiment, the polymerization process may comprise low levels of catalyst in an oxidized state that react with a reducing agent to form an active catalyst. Embodiments of the process surprisingly use low levels of catalysts and allow formation of the all blocks with the same catalyst. The catalyst may be deactivated and reactivated to form each block. In one embodiment of the invention, the catalyst is oxidized to the deactivator state when the desired degree of polymerization of a polymer segment or block is reached. The first monomer may be removed prior to addition of the second monomer. The catalyst may then be reactivated for preparation of a second block.
    Type: Application
    Filed: December 20, 2006
    Publication date: July 2, 2009
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Wojciech Jakubowski, James Spanswick, Laura Mueller, Krzysztof Matyjaszewski
  • Publication number: 20070276101
    Abstract: Embodiments of the polymerization process of the present invention are directed to polymerizing free radically polymerizable monomers in the presence of a polymerization medium initially comprising at least one transition metal catalyst and an atom transfer radical polymerization initiator. The polymerization medium may additionally comprise a reducing agent. The reducing agent may be added initially or during the polymerization process in a continuous or intermittent manner. The polymerization process may further comprise reacting the reducing agent with at least one of the transition metal catalyst in an oxidized state and a compound comprising a radically transferable atom or group to form a compound that does not participate significantly in control of the polymerization process.
    Type: Application
    Filed: March 7, 2005
    Publication date: November 29, 2007
    Applicant: CARNEGIE MELLON UINIVERSITY
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Wojciech Jakubowski, Ke Min, James Spanswick, Nicolay Tsarevsky
  • Publication number: 20070244265
    Abstract: The process of the present invention is directed toward conducting highly selective, high yield post polymerization reactions on polymers to prepare functionalized polymers. An embodiment of the present invention comprises conducting click chemistry reactions on polymers. Preferably, the polymers were prepared by controlled polymerization processes. Therefore, embodiments of the present invention comprise processes for the preparation of polymers comprising conducting a click chemistry reaction on a functional group attached to a polymer, wherein the polymer has a molecular weight distribution of less than 2.0. The functional polymers may be prepared by converting an attached functional unit on the polymer thereby providing site specific functional materials, site specific functional materials comprising additional functionality, or chain extended functional materials.
    Type: Application
    Filed: March 7, 2005
    Publication date: October 18, 2007
    Inventors: Krzyszlof Matyjaszewski, Brent Sumerlin, Nicolay Tsarvsky, James Spanswick
  • Publication number: 20070155926
    Abstract: Polymers comprising a polymer backbone comprising one or more degradable units are described. The polymer may additionally comprise two or more polymer segments comprising radically (co)polymerizable vinyl monomer units. The degradable units may be independently selected from, but not limited to, at least one of hydrodegradable, photodegradable and biodegradable units between the polymer segments and dispersed along the polymer backbone. The degradable units may be derived from one or more monomers comprising a heterocyclic ring that is capable of undergoing radical ring opening polymerization, a coupling agent, or from a polymerization initiator, radically polymerizable monomers, as well as other reactive sources. Embodiments of the degradable polymer of claim are capable of degrading by at least one of a hydrodegradation, photodegradation or biodegradation mechanisms to form at least one of telechelic oligomer and telechelic polymeric fragments of the polymer.
    Type: Application
    Filed: March 29, 2004
    Publication date: July 5, 2007
    Inventors: Krzysztof Matyjaszewski, Im Sik Chung, Jinyu Huang, Traian Sarbu, Daniel Siegwart, James Spanswick, Nicolay Tsarevsky
  • Patent number: 7056455
    Abstract: The present invention comprises a novel process for the preparation of carbon based structured materials with controlled topology, morphology and functionality. The nanostructured materials are prepared by controlled carbonization, or pyrolysis, of precursors comprising phase separated copolymers. The precursor materials are selected to phase separate and self organize in bulk, in solution, in the presence of phase selective solvents, at surfaces, interfaces or during fabrication, into articles, fibers or films exhibiting well-defined, self-organized morphology or precursors of well-defined, self-organized, bi- or tri-phasic morphology. Compositional control over the (co)polymers provides control over the structure of the phase separated precursor whose organization therein dictates the nanostructure of the material obtained after carbonization or pyrolysis, wherein each dimension of the formed structure can be predetermined.
    Type: Grant
    Filed: April 6, 2002
    Date of Patent: June 6, 2006
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Tomasz Kowalewski, David N. Lambeth, James Spanswick, Nicolay V. Tsarevsky
  • Patent number: 6642407
    Abstract: This invention provides a process for purifying the crude aromatic dicarboxylic acids produced by oxidation of dialkyl aromatic hydrocarbons and for using the purified acids in the preparation of polyethylene terephthalate, polyethylene naphthalate and other polyesters. The invention simplifies the manufacturing process by converting the crude aromatic acids into bis-glycol esters in an esterification reactor 4, from which the esterified partial oxidation impurities present in the oxidation product are removed by distillation in distillation tower 5. After removal of the volatile impurities, the dicarboxylic acid esters can separated by distillation in distillation tower 6 or by crystallization and converted to polyesters by polycondensation. The volatile impurities removed as overhead from tower 5 can be recycled as stream 16 to the oxidation reactor where they act as oxidation promoters thereby optionally allowing for a bromine-free oxidation process for dialkyl aromatic hydrocarbons.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: November 4, 2003
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Krishna Kulai Rao, Russell D. Sellen, Xiaobing Feng, James Spanswick, William F. Huber, Jr.
  • Publication number: 20030185741
    Abstract: The present invention comprises a novel process for the preparation of carbon based structured materials with controlled topology, morphology and functionality. The nanostructured materials are prepared by controlled carbonization, or pyrolysis, of precursors comprising phase separated copolymers. The precursor materials are selected to phase separate and self organize in bulk, in solution, in the presence of phase selective solvents, at surfaces, interfaces or during fabrication, into articles, fibers or films exhibiting well-defined, self-organized morphology or precursors of well-defined, self-organized, bi- or tri-phasic morphology. Compositional control over the (co)polymers provides control over the structure of the phase separated precursor whose organization therein dictates the nanostructure of the material obtained after carbonization or pyrolysis, wherein each dimension of the formed structure can be predetermined.
    Type: Application
    Filed: April 6, 2002
    Publication date: October 2, 2003
    Inventors: Krzysztof Matyjaszewski, Tomasz Kowalewski, David N. Lambeth, James Spanswick, Nicolay V. Tsarevsky
  • Publication number: 20020173674
    Abstract: This invention provides a process for purifying the crude aromatic dicarboxylic acids produced by oxidation of dialkyl aromatic hydrocarbons and for using the purified acids in the preparation of polyethylene terephthalate, polyethylene naphthalate and other polyesters. The invention simplifies the manufacturing process by converting the crude aromatic acids into bis-glycol esters in an esterification reactor 4, from which the esterified partial oxidation impurities present in the oxidation product are removed by distillation in distillation tower 5. After removal of the volatile impurities, the dicarboxylic acid esters can separated by distillation in distillation tower 6 or by crystallization and converted to polyesters by polycondensation. The volatile impurities reoved as overhead from tower 5 can be recycled as stream 16 to the oxidation reactor where they act as oxidation promoters thereby optionally allowing for a bromine-free oxidation process for dialkyl aromatic hydrocarbons.
    Type: Application
    Filed: April 26, 2002
    Publication date: November 21, 2002
    Inventors: Krishna Kulai Rao, Russell D. Sellen, Xiaobing Feng, James Spanswick, William F. Huber
  • Patent number: 5032667
    Abstract: Described herein are amide and/or imide containing polymers based on novel monomers that contain isoalkylidene bridges. These polymers have excellent toughness combined with high temperature stability, low water absorption, and good melt-fabricability.
    Type: Grant
    Filed: December 20, 1989
    Date of Patent: July 16, 1991
    Assignee: Amoco Corporation
    Inventors: James E. Harris, Abe Berger, Vilas M. Chopdekar, Markus Matzner, James Spanswick
  • Patent number: 4925916
    Abstract: Described herein are amide and/or imide containing polymers based on novel monomers that contain isoalkylidene bridges. These polymers have excellent toughness combined with high temperature stability, low water absorption, and good melt-fabricability.
    Type: Grant
    Filed: November 18, 1987
    Date of Patent: May 15, 1990
    Assignee: Amoco Corporation
    Inventors: James E. Harris, Abe Berger, Vilas M. Chopdekar, Markus Matzner, James Spanswick