Patents by Inventor James St. Leger Harley

James St. Leger Harley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11637638
    Abstract: A method at a receiver comprises receiving a signal conveying symbols at respective positions within a clock cycle, the symbols comprising a data set consisting of data symbols and a pilot set consisting of pilot symbols; determining detected phases of the symbols based on the signal; generating first phase estimates based on the detected phases of a subset of the pilot set, and reference phases of the subset of the pilot set, the first phase estimates being associated with the positions of the pilot set; and generating second phase estimates based on the detected phases of the pilot set, reference phases of the pilot set, and the first phase estimates, the second phase estimates being associated with the positions of the pilot set and of at least a subset of the data set; and applying rotations to the detected phases of the symbols based on the second phase estimates.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: April 25, 2023
    Assignee: CIENA CORPORATION
    Inventors: James St. Leger Harley, Tung Trong Nguyen, Timothy Creasy, Blake Toplis
  • Patent number: 11451367
    Abstract: A receiver generates a stream of digital samples from an analog electrical signal that represents data conveyed to the receiver over a communication channel, where the stream of digital samples comprises current samples corresponding to a current timepoint, previous samples corresponding to a timepoint earlier than the current timepoint, and subsequent samples corresponding to a timepoint later than the current timepoint. The receiver generates previous, current, and subsequent phase offset signals based on the previous, current, and subsequent samples, respectively. The receiver uses the previous phase offset signal to adjust clock frequency and clock phase of the current samples, thereby resulting in current adjusted samples. The receiver adjusts clock phase of the current adjusted samples based on any one of the previous, current, and subsequent phase offset signals. In some examples, receiver adjusts the clock phase of the current adjusted samples based on the subsequent phase offset signal.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: September 20, 2022
    Assignee: Ciena Corporation
    Inventors: Shahab Oveis Gharan, James St. Leger Harley, Tung Trong Nguyen
  • Publication number: 20220294538
    Abstract: A method at a receiver comprises receiving a signal conveying symbols at respective positions within a clock cycle, the symbols comprising a data set consisting of data symbols and a pilot set consisting of pilot symbols; determining detected phases of the symbols based on the signal; generating first phase estimates based on the detected phases of a subset of the pilot set, and reference phases of the subset of the pilot set, the first phase estimates being associated with the positions of the pilot set; and generating second phase estimates based on the detected phases of the pilot set, reference phases of the pilot set, and the first phase estimates, the second phase estimates being associated with the positions of the pilot set and of at least a subset of the data set; and applying rotations to the detected phases of the symbols based on the second phase estimates.
    Type: Application
    Filed: December 7, 2021
    Publication date: September 15, 2022
    Applicant: CIENA CORPORATION
    Inventors: James St. Leger HARLEY, Tung Trong NGUYEN, Timothy CREASY, Blake TOPLIS
  • Publication number: 20220294604
    Abstract: A receiver generates a stream of digital samples from an analog electrical signal that represents data conveyed to the receiver over a communication channel, where the stream of digital samples comprises current samples corresponding to a current timepoint, previous samples corresponding to a timepoint earlier than the current timepoint, and subsequent samples corresponding to a timepoint later than the current timepoint. The receiver generates previous, current, and subsequent phase offset signals based on the previous, current, and subsequent samples, respectively. The receiver uses the previous phase offset signal to adjust clock frequency and clock phase of the current samples, thereby resulting in current adjusted samples. The receiver adjusts clock phase of the current adjusted samples based on any one of the previous, current, and subsequent phase offset signals. In some examples, receiver adjusts the clock phase of the current adjusted samples based on the subsequent phase offset signal.
    Type: Application
    Filed: September 24, 2021
    Publication date: September 15, 2022
    Inventors: Shahab OVEIS GHARAN, James St. Leger HARLEY, Tung Trong NGUYEN
  • Patent number: 11336367
    Abstract: A method performed at a transmitter comprises generating a set of digital signals representing a constellation point, each dimension of the point being uniquely represented by m bits, where m?{1, 2, 3}; applying a linear polyphase filter to a digital signal of the set, the linear polyphase filter pre-compensating for a linear transfer function of an electro-optic path of the digital signal and generating a first filtered signal having a roll-off factor ?, where ? is a positive real number satisfying ??1; applying a nonlinear polyphase filter to the digital signal, in parallel to applying the linear polyphase filter to the digital signal, the nonlinear polyphase filter generating a second filtered signal representing nonlinear noise in the electro-optic path; calculating a pre-compensated digital signal from a difference between the first and second filtered signals; and transmitting an optical signal based on the pre-compensated digital signal.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: May 17, 2022
    Assignee: IENA CORPORATION
    Inventors: Shahab Oveis Gharan, James St. Leger Harley, Kendal Zimmer, Christian Bourget
  • Publication number: 20220085894
    Abstract: A transmitter maps an N-bit sequence to a point selected from a four-dimensional (4D) constellation consisting of 2N points which form a subset of a Cartesian product of first and second two-dimensional (2D) constellations, the first constellation consisting of M1 points divided into first, second, and third points, and the second constellation consisting of M2 points divided into fourth, fifth, and sixth points, wherein M1, M2?5, and wherein log2(M1×M2)>N. The subset includes any 4D point that is generated by combining any one of the M1 points and any one of the fourth points; includes any 4D point that is generated by combining any one of the first points and any one of M2 points; and excludes any 4D point that is generated by combining any third point and any sixth point. An optical signal representing the selected point is transmitted to a receiver.
    Type: Application
    Filed: September 11, 2020
    Publication date: March 17, 2022
    Applicant: Ciena Corporation
    Inventors: Shahab OVEIS GHARAN, Michael Andrew REIMER, James St. Leger HARLEY
  • Patent number: 11277206
    Abstract: A transmitter maps an N-bit sequence to a point selected from a four-dimensional (4D) constellation consisting of 2N points which form a subset of a Cartesian product of first and second two-dimensional (2D) constellations, the first constellation consisting of M1 points divided into first, second, and third points, and the second constellation consisting of M2 points divided into fourth, fifth, and sixth points, wherein M1, M2?5, and wherein log2(M1×M2)>N. The subset includes any 4D point that is generated by combining any one of the M1 points and any one of the fourth points; includes any 4D point that is generated by combining any one of the first points and any one of M2 points; and excludes any 4D point that is generated by combining any third point and any sixth point. An optical signal representing the selected point is transmitted to a receiver.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: March 15, 2022
    Assignee: Ciena Corporation
    Inventors: Shahab Oveis Gharan, Michael Andrew Reimer, James St. Leger Harley
  • Patent number: 6574016
    Abstract: This invention provides method and apparatus for ancillary data in a wavelength division multiplexed (WDM) system. According to the invention, a low bit rate channel is provided over a amplitude modulated sub-carrier that is in turn used to amplitude intensity modulate an optical data signal that is output from a transmitter in the network. Data carried by the low bit rate channel can by used by another network element (NE) to determine the identity of the channel source, thereby allowing the NE to verify its connectivity to that source via the network. This invention is particularly useful in metropolitan optical networks (MON) where inexpensive methods of determining network connectivity are required.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: June 3, 2003
    Assignee: Nortel Networks Limited
    Inventors: James St. Leger Harley, Ping Wan, Paul Alan Bruce
  • Patent number: 6323978
    Abstract: A method and apparatus for embedding control information in an optical signal transporting optical data, consisting of encoding the control information as a control signal having an amplitude proportional to a controllable modulation depth. The optical signal is then optically modulated in accordance with the amplitude of the control signal. The control signal is subsequently detected and the control information is decoded. A major feature of the invention lies in determining a level of similarity between the encoded and decoded control information and varying the modulation depth according to this level of similarity. Hence, the modulation depth yielding a given bit-error rate (BER) or signal-to-noise ration (SNR) can be minimized, in order to reduce the degradation of the optical channel data. The invention also provides a means for modulating the control information about a carrier frequency, and varying this carrier frequency if the SNR is below a certain tolerance value.
    Type: Grant
    Filed: April 6, 1998
    Date of Patent: November 27, 2001
    Assignee: Nortel Networks Limited
    Inventors: James St. Leger Harley, Richard A. Habel, Avid Lemus
  • Patent number: 6101012
    Abstract: An add/drop multiplexer/demultiplexer (ADM) for switching, modulating and attenuating optical signals in a fiber optic network employing wavelength division multiplexing (WDM) is disclosed. The ADM is equipped an optical multiplexer for splitting an input WDM signal into individual optical signals, leading to respective 2.times.2 switches. Each switch has another input originating from a plurality of "add lines", and selects one of its inputs to be dropped and the other to continue along a main signal path. The retained signals may be modulated and attenuated prior to being tapped and finally multiplexed together by a WDM multiplexer. The tapped signals are optoelectronically converted and fed back to a controller, preferably a digital signal processor running a software algorithm, which controls the switching, modulation and attenuation.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: August 8, 2000
    Assignee: Nortel Networks Corporation
    Inventors: David John Danagher, Alan G. Solheim, Maurice S. O'Sullivan, Richard A. Habel, Kim Byron Roberts, Duncan John Forbes, Nigel Baker, Ian Hardcastle, Takis Hadjifotiou, Bipin Patel, Giuseppe Bordogna, James St. Leger Harley
  • Patent number: 5959749
    Abstract: An add/drop multiplexer/demultiplexer (ADM) for switching, modulating and attenuating optical signals in a fiber optic network employing wavelength division multiplexing (WDM) is disclosed. The ADM is equipped an optical multiplexer for splitting an input WDM signal into individual optical signals, leading to respective 2.times.2 switches. Each switch has another input originating from a plurality of "add lines", and selects one of its inputs to be dropped and the other to continue along a main signal path. The retained signals may be modulated and attenuated prior to being tapped and finally multiplexed together by a WDM multiplexer. The tapped signals are optoelectronically converted and fed back to a controller, preferably a digital signal processor running a software algorithm, which controls the switching, modulation and attenuation.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: September 28, 1999
    Assignee: Nortel Networks Corporation
    Inventors: David John Danagher, Alan G. Solheim, Maurice S. O'Sullivan, Richard A. Habel, Kim Byron Roberts, Duncan John Forbes, Nigel Baker, Ian Hardcastle, Takis Hadjifotiou, Bipin Patel, Giuseppe Bordogna, James St. Leger Harley
  • Patent number: 5859716
    Abstract: In an apparatus and method for troubleshooting a transmission system comprising optical line amplifiers (OA), optical reflections can be detected irrespective if a data signal is present or absent. Each OA is equipped with a self-stimulation signal detection unit for generating a low frequency local code unique to the transmission system and dithering the outgoing signal in a controlled manner with the local code. Each OA attempts to detect its local code in the incoming signal by comparing the energy of the transmitted and received dithers. The presence of the local code in the incoming signal initiates alarms which unequivocally identify the faulted OA. Each OA selects its local code out of a bank of local codes, according to a priority scheme and re-selects its local code in case of conflicts.
    Type: Grant
    Filed: January 18, 1996
    Date of Patent: January 12, 1999
    Assignee: Northern Telecom Limited
    Inventors: Maurice Stephen O'Sullivan, Kim Byron Roberts, James St.Leger Harley, Jeffrey Alan Weslowski
  • Patent number: 5822094
    Abstract: In an apparatus and method for troubleshooting a transmission system comprising optical line amplifiers (OA), optical reflections can be detected irrespective if a data signal is present or absent. Each OA is equipped with a self-stimulation signal detection unit for generating a low frequency local code unique to the transmission system and dithering the outgoing signal in a controlled manner with the local code. Each OA attempts to detect its local code in the incoming signal by comparing the energy of the transmitted and received dithers. The presence of the local code in the incoming signal initiates alarms which unequivocally identify the faulted OA. Each OA selects its local code out of a bank of local codes, according to a priority scheme and re-selects its local code in case of conflicts.
    Type: Grant
    Filed: September 5, 1997
    Date of Patent: October 13, 1998
    Assignee: Northern Telecom Limited
    Inventors: Maurice Stephen O'Sullivan, Kim Bryon Roberts, James St. Leger Harley, Jeffrey Alan Weslowski