Patents by Inventor James THORP
James THORP has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11604280Abstract: Examples of FMCW laser radar systems and methods described herein may segment the processing of a broader bandwidth frequency chirp into multiple shorter-duration (e.g., lower bandwidth) frequency chirps. This segmentation may have the benefits in some examples of improving the measurement duty cycle and range resolution, and/or allowing for more flexible processing, and/or enabling improved detection of more distant objects.Type: GrantFiled: October 2, 2018Date of Patent: March 14, 2023Assignee: Bridger Photonics, Inc.Inventors: Peter Aaron Roos, Michael James Thorpe, Jason Kenneth Brasseur
-
Patent number: 11592563Abstract: Embodiments of the disclosure are drawn to apparatuses and methods for a rotating optical reflector. Optical systems may have a limited field of view, and so in order to expand the area that the optical system collects data from, the field of view of the optical system may be scanned across a target area. The present disclosure is directed to a rotating optical reflector, which includes a transmissive layer which refracts light onto a reflective layer, which has a normal which is not parallel to the axis about which the optical reflector is rotated. The optical reflector may be both statically and dynamically balanced, which may allow an increased size of the optical reflector, which in turn may increase the aperture of an optical system (e.g., a lidar system) using the rotating optical reflector.Type: GrantFiled: October 17, 2018Date of Patent: February 28, 2023Inventors: Peter Aaron Roos, Michael James Thorpe, Aaron Thomas Kreitinger, Christopher Ray Wilson
-
Patent number: 11422258Abstract: Methods and apparatuses are described for frequency-modulated continuous-wave (FMCW) light detection and ranging (LiDAR). Examples are provided where high-closed-loop bandwidth, active feedback applied to laser frequency chirps may provide increases in the free-running laser coherence length for long-range FMCW distance measurements. Examples are provided that use an asymmetric sideband generator within an active feedback loop for higher closed-loop bandwidth. Examples of using a single shared reference interferometer within multiple active feedback loops that may be used for increasing the coherence length of multiple chirped lasers are described. Example calibrators are also described.Type: GrantFiled: March 16, 2018Date of Patent: August 23, 2022Assignee: Bridger Photonics, Inc.Inventors: Michael James Thorpe, Jason Kenneth Brasseur, Peter Aaron Roos, Nathan Joseph Greenfield, Aaron Thomas Kreitinger
-
Patent number: 11422244Abstract: Examples are provided that use multiple analog-to-digital converters (ADCs) to disambiguate FMCW ladar range returns from one or more targets that may be greater than the Nyquist frequencies of one or more of the ADCs. Examples are also provided that use a first and a second laser FMCW return signal (e.g., reflected beam) in combination with two or more ADCs to disambiguate one or more target ranges (e.g., distances to one or more objects).Type: GrantFiled: September 25, 2018Date of Patent: August 23, 2022Assignee: Bridger Photonics, Inc.Inventors: Michael James Thorpe, Peter Aaron Roos
-
Publication number: 20220239705Abstract: This invention relates to a method of processing sensitive information over VoIP. The method provides a method of processing, by a call processor, a media call comprising the steps of: receiving a first signalling stream from a first entity; creating a second signalling stream to a second entity; forwarding signals received from the first signalling stream to the second signalling stream; receiving a third signalling stream from the second entity; creating a fourth signalling stream to the first entity; and forwarding signals received on the third signalling stream to the fourth signalling stream; the first signalling stream containing instructions to set up a media call between the first entity and the second entity such that media is transmitted over a first media stream from the first entity to the second entity and a media is transmitted over a second media stream from the second entity to the first entity without intervention by said call processor.Type: ApplicationFiled: April 11, 2022Publication date: July 28, 2022Inventors: Geoff Forsyth, Cesar Branco, James Thorpe
-
Publication number: 20220217185Abstract: The invention relates to a method of processing sensitive information over VoIP. The method provides a method of processing, by a call processor, a media call comprising the steps of: receiving a first signalling stream from a first entity; creating a second signalling stream to a second entity; forwarding signals received from the first signalling stream to the second signalling stream; receiving a third signalling stream from the second entity; creating a fourth signalling stream to the first entity; and forwarding signals received on the third signalling stream to the fourth signalling stream; the first signalling stream containing instructions to set up a media call between the first entity and the second entity such that media is transmitted over a first media stream from the first entity to the second entity and a media is transmitted over a second media stream from the second entity to the first entity without intervention by said call processor.Type: ApplicationFiled: March 18, 2022Publication date: July 7, 2022Inventors: Geoff Forsyth, Cesar Branco, James Thorpe
-
Patent number: 11310291Abstract: This invention relates to a method of processing sensitive information over VoIP. The method provides a method of processing, by a call processor, a media call comprising the steps of: receiving a first signalling stream from a first entity; creating a second signalling stream to a second entity; forwarding signals received from the first signalling stream to the second signalling stream; receiving a third signalling stream from the second entity; creating a fourth signalling stream to the first entity; and forwarding signals received on the third signalling stream to the fourth signalling stream; the first signalling stream containing instructions to set up a media call between the first entity and the second entity such that media is transmitted over a first media stream from the first entity to the second entity and a media is transmitted over a second media stream from the second entity to the first entity without intervention by said call processor.Type: GrantFiled: October 9, 2018Date of Patent: April 19, 2022Assignee: PCI-PAL (U.K.) LimitedInventors: Geoff Forsyth, César Branco, James Thorpe
-
Publication number: 20220082495Abstract: Apparatuses, systems, and methods for open path laser spectroscopy with mobile platforms. An example system may include a first mobile platform and a second mobile platform, each of which supports a payload. A light beam directed from one payload to another may define a measurement path, which may be at a particular height above the ground. The payloads may determine a gas concentration along the measurement path. Wind information at the measurement height may be used to determine a gas flux. One or both of the mobile platforms may then move to a new location, and take a measurement along a new measurement path. By combining the measurement paths, gas flux through a flux surface may be determined.Type: ApplicationFiled: January 15, 2020Publication date: March 17, 2022Inventors: Aaron Thomas Kreitinger, Michael James Thorpe, Peter Aaron Roos
-
Publication number: 20220057202Abstract: Measurement apparatuses and methods are disclosed for generating high-precision and—accuracy gas concentration maps that can be overlaid with 3D topographic images by rapidly scanning one or several modulated laser beams with a spatially-encoded transmitter over a scene to build-up imagery. Independent measurements of the topographic target distance and path-integrated gas concentration are combined to yield a map of the path-averaged concentration between the sensor and each point in the image. This type of image is particularly useful for finding localized regions of elevated (or anomalous) gas concentration making it ideal for large-area leak detection and quantification applications including: oil and gas pipeline monitoring, chemical processing facility monitoring, and environmental monitoring.Type: ApplicationFiled: August 11, 2021Publication date: February 24, 2022Applicant: Bridger Photonics, Inc.Inventors: Aaron Thomas Kreitinger, Michael James Thorpe
-
Publication number: 20220034718Abstract: Embodiments of the disclosure are drawn to apparatuses and methods for anomalous gas concentration detection. A spectroscopic system, such as a wavelength modulated spectroscopy (WMS) system may measure gas concentrations in a target area. However, noise, such as speckle noise, may interfere with measuring relatively low concentrations of gas, and may lead to false positives. A noise model, which includes a contribution from a speckle noise model, may be used to process data from the spectroscopic system. An adaptive threshold may be applied based on an expected amount of noise. A speckle filter may remove measurements which are outliers based on a measurement of their noise. Plume detection may be used to determine a presence of gas plumes. Each of these processing steps may be associated with a confidence, which may be used to determine an overall confidence in the processed measurements/gas plumes.Type: ApplicationFiled: August 23, 2021Publication date: February 3, 2022Applicant: Bridger Photonics, Inc.Inventors: Aaron Thomas Kreitinger, Michael James Thorpe
-
Patent number: 11213028Abstract: Compositions and methods for controlling pests are provided. The methods involve transforming organisms with a nucleic acid sequence encoding an insecticidal protein. In particular, the nucleic acid sequences are useful for preparing plants and microorganisms that possess insecticidal activity. Thus, transformed bacteria, plants, plant cells, plant tissues and seeds are provided. Compositions are insecticidal nucleic acids and proteins of bacterial species. The sequences find use in the construction of expression vectors for subsequent transformation into organisms of interest including plants, as probes for the isolation of other homologous (or partially homologous) genes. The pesticidal proteins find use in controlling, inhibiting growth or killing Lepidopteran, Coleopteran, Dipteran, fungal, Hemipteran and nematode pest populations and for producing compositions with insecticidal activity.Type: GrantFiled: December 18, 2017Date of Patent: January 4, 2022Inventors: Jennifer Kara Barry, Hua Dong, James English, Jacob Gilliam, Kai M. Hillman, Daniel James Thorpe, Thomas Chad Wolfe, Nasser Yalpani
-
Publication number: 20210293960Abstract: Embodiments of the present disclosure are drawn to apparatuses, systems, and methods for range peak pairing and high accuracy target tracking using frequency-modulated continuous-wave (FMCW) light detection and ranging (LiDAR). A laser source may illuminate a target with a first laser chirp pair during a first time period and a second laser chirp pair during a second time period. Based on the configuration of the chirps between the pairs and within the pairs, properties of the target may be determined. For example, range estimates may be made based on each chirp pair, and those estimates may be averaged to cancel out a Doppler shift error. In another example, the Doppler shift may be determined, which may increase the accuracy of a range measurement and/or be used to identify which peaks are associated with a given target.Type: ApplicationFiled: July 18, 2019Publication date: September 23, 2021Inventors: Seth Kreitinger, Michael James Thorpe
-
Patent number: 11112308Abstract: Embodiments of the disclosure are drawn to apparatuses and methods for anomalous gas concentration detection. A spectroscopic system, such as a wavelength modulated spectroscopy (WMS) system may measure gas concentrations in a target area. However, noise, such as speckle noise, may interfere with measuring relatively low concentrations of gas, and may lead to false positives. A noise model, which includes a contribution from a speckle noise model, may be used to process data from the spectroscopic system. An adaptive threshold may be applied based on an expected amount of noise. A speckle filter may remove measurements which are outliers based on a measurement of their noise. Plume detection may be used to determine a presence of gas plumes. Each of these processing steps may be associated with a confidence, which may be used to determine an overall confidence in the processed measurements/gas plumes.Type: GrantFiled: November 14, 2018Date of Patent: September 7, 2021Assignee: Bridger Photonics, Inc.Inventors: Aaron Thomas Kreitinger, Michael James Thorpe
-
Patent number: 11105621Abstract: Measurement apparatuses and methods are disclosed for generating high-precision and -accuracy gas concentration maps that can be overlaid with 3D topographic images by rapidly scanning one or several modulated laser beams with a spatially-encoded transmitter over a scene to build-up imagery. Independent measurements of the topographic target distance and path-integrated gas concentration are combined to yield a map of the path-averaged concentration between the sensor and each point in the image. This type of image is particularly useful for finding localized regions of elevated (or anomalous) gas concentration making it ideal for large-area leak detection and quantification applications including: oil and gas pipeline monitoring, chemical processing facility monitoring, and environmental monitoring.Type: GrantFiled: May 28, 2019Date of Patent: August 31, 2021Assignee: Bridger Photonics, Inc.Inventors: Aaron Thomas Kreitinger, Michael James Thorpe
-
Publication number: 20210194939Abstract: A method of processing sensitive information over VoIP provides a method of processing, by a call processor, a media call comprising the steps of: receiving a first signalling stream from a first entity; creating a second signalling stream to a second entity; forwarding signals received from the first signalling stream to the second signalling stream; receiving a third signalling stream from the second entity; creating a fourth signalling stream to the first entity; and forwarding signals received on the third signalling stream to the fourth signalling stream; the first signalling stream containing instructions to set up a media call between the first entity and the second entity such that media is transmitted over a first media stream from the first entity to the second entity and a media is transmitted over a second media stream from the second entity to the first entity without intervention by said call processor.Type: ApplicationFiled: October 9, 2018Publication date: June 24, 2021Inventors: Geoff Forsyth, César Branco, James Thorpe
-
Publication number: 20210190953Abstract: Embodiments of the disclosure are drawn to apparatuses and methods for a rotating optical reflector. Optical systems may have a limited field of view, and so in order to expand the area that the optical system collects data from, the field of view of the optical system may be scanned across a target area. The present disclosure is directed to a rotating optical reflector, which includes a transmissive layer which refracts light onto a reflective layer, which has a normal which is not parallel to the axis about which the optical reflector is rotated. The optical reflector may be both statically and dynamically balanced, which may allow an increased size of the optical reflector, which in turn may increase the aperture of an optical system (e.g., a lidar system) using the rotating optical reflector.Type: ApplicationFiled: October 17, 2018Publication date: June 24, 2021Inventors: Peter Aaron Roos, Michael James Thorpe, Aaron Thomas Kreitinger, Christopher Ray Wilson
-
Publication number: 20210055180Abstract: Embodiments of the disclosure are drawn to apparatus and methods for determining gas flux measurements. A gas plume may be emitted from a source and may be blown by wind in an environment. A measurement system, such as a light detection and ranging (lidar) system may collect a plurality of gas concentration measurements associated with the gas plume at a plurality of locations in the environment. A gas flux may be determined based on one or more of the gas concentration measurements along with a wind speed at a location associated with the gas plume. In some embodiments, a height of the gas plume may be determined, and the wind speed at the height of the gas plume may be determined and used to determine the gas flux.Type: ApplicationFiled: February 1, 2019Publication date: February 25, 2021Inventors: Michael James Thorpe, Aaron Thomas Kreitinger
-
Publication number: 20200355552Abstract: Embodiments of the disclosure are drawn to apparatuses and methods for anomalous gas concentration detection. A spectroscopic system, such as a wavelength modulated spectroscopy (WMS) system may measure gas concentrations in a target area. However, noise, such as speckle noise, may interfere with measuring relatively low concentrations of gas, and may lead to false positives. A noise model, which includes a contribution from a speckle noise model, may be used to process data from the spectroscopic system. An adaptive threshold may be applied based on an expected amount of noise. A speckle filter may remove measurements which are outliers based on a measurement of their noise. Plume detection may be used to determine a presence of gas plumes. Each of these processing steps may be associated with a confidence, which may be used to determine an overall confidence in the processed measurements/gas plumes.Type: ApplicationFiled: November 14, 2018Publication date: November 12, 2020Inventors: Aaron Thomas Kreitinger, Michael James Thorpe
-
Publication number: 20200278432Abstract: Examples are provided that use multiple analog-to-digital converters (ADCs) to disambiguate FMCW ladar range returns from one or more targets that may be greater than the Nyquist frequencies of one or more of the ADCs. Examples are also provided that use a first and a second laser FMCW return signal (e.g., reflected beam) in combination with two or more ADCs to disambiguate one or more target ranges (e.g., distances to one or more objects).Type: ApplicationFiled: September 25, 2018Publication date: September 3, 2020Inventors: Michael James Thorpe, Peter Aaron Roos
-
Publication number: 20200241139Abstract: Examples of FMCW laser radar systems and methods described herein may segment the processing of a broader bandwidth frequency chirp into multiple shorter-duration (e.g., lower bandwidth) frequency chirps. This segmentation may have the benefits in some examples of improving the measurement duty cycle and range resolution, and/or allowing for more flexible processing, and/or enabling improved detection of more distant objects.Type: ApplicationFiled: October 2, 2018Publication date: July 30, 2020Inventors: Peter Aaron Roos, Michael James Thorpe, Jason Kenneth Brasseur