Patents by Inventor James Thorpe Browell

James Thorpe Browell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10333184
    Abstract: The present disclosure is directed to a heat flux assembly for an energy storage device. The energy storage device includes a housing with a plurality of side walls that define an internal volume and a plurality of cells configured within the internal volume. The heat flux assembly includes a plurality of heat flux components configured for arrangement with the side walls of the housing of the energy storage device and one or more temperature sensors configured with each of the plurality of heat flux components. Thus, the temperature sensors are configured to monitor one or more temperatures at various locations in the plurality of heat flux components. The heat flux assembly also includes a controller configured to adjust a power level of each of the heat flux components as a function of the monitored temperature so as to reduce a temperature gradient or difference across the plurality of cells during operation of the energy storage device.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: June 25, 2019
    Assignee: General Electric Company
    Inventors: Kristopher John Frutschy, James S. Lindsey, David Charles Bogdan, Jr., James Thorpe Browell, Patrick Daniel Willson, Amin Ajdari, Narayan Subramanian, Michael Stanley Zanoni, Lukas Mercer Hansen
  • Patent number: 10177354
    Abstract: The present disclosure is directed to an energy storage device having improved thermal performance. More specifically, the energy storage device includes a housing with side walls that define an internal volume. The side walls include bottom and front side walls, with the front side wall having an air inlet and outlet configured to circulate cooling air therethrough. The energy storage device also includes a plurality of cells arranged in a matrix within the internal volume atop the bottom side wall. Further, the cells define a top surface. Further, the energy storage device includes an exhaust manifold adjacent to the front side wall between at least a portion of the cells and the air inlet. Thus, the exhaust manifold is configured to direct airflow from the top surface towards the bottom side wall and then to the air outlet so as to provide an airflow barrier between cooling air entering the air inlet and the cells.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: January 8, 2019
    Assignee: General Electric Company
    Inventors: Michael Stanley Zanoni, Kenneth McClellan Rush, Christopher Richard Smith, James Thorpe Browell, Wenpeng Liu
  • Publication number: 20180062230
    Abstract: The present disclosure is directed to systems and methods for providing a cooling airflow to an energy storage system. The energy storage system can include one or more energy storage devices positioned within a defined thermal zone. The energy storage system can include a thermal control system configured to provide a cooling airflow to the one or more energy storage devices. The thermal control system can include a heat exchanging device configured to provide a cooled airflow to the defined thermal zone. The thermal control system can also include a moveable element configured to adjust a distribution of airflow within the defined thermal zone.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: James Thorpe Browell, Michael Stanley Zanoni, Amin Ajdari, Ahmed Mandil, Richard Hayes Cutright, Kenneth McClellan Rush, Thomas Joseph Horgan
  • Patent number: 9806387
    Abstract: The present disclosure is directed to an improved energy storage device having a housing with one or more side walls that define an internal volume. The side walls include a bottom side wall and a front side wall having an air inlet and outlet. The energy storage device also includes a plurality of cells arranged in a matrix within the internal volume atop the bottom side wall. Further, the cells define a top surface. In addition, the energy storage device includes an airflow distribution network configured with the air inlet and the air outlet. Moreover, the airflow distribution network is at least partially sealed from the plurality of cells (e.g. at the front side wall) so as to reduce temperature variability across the cells when external air is provided through the air inlet.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: October 31, 2017
    Assignee: General Electric Company
    Inventors: Kristopher John Frutschy, James S. Lindsey, Kanthi Latha Bhamidipati, James Thorpe Browell, Ross M. Snyder, II
  • Publication number: 20170069939
    Abstract: The present disclosure is directed to a heat flux assembly for an energy storage device. The energy storage device includes a housing with a plurality of side walls that define an internal volume and a plurality of cells configured within the internal volume. The heat flux assembly includes a plurality of heat flux components configured for arrangement with the side walls of the housing of the energy storage device and one or more temperature sensors configured with each of the plurality of heat flux components. Thus, the temperature sensors are configured to monitor one or more temperatures at various locations in the plurality of heat flux components. The heat flux assembly also includes a controller configured to adjust a power level of each of the heat flux components as a function of the monitored temperature so as to reduce a temperature gradient or difference across the plurality of cells during operation of the energy storage device.
    Type: Application
    Filed: September 9, 2015
    Publication date: March 9, 2017
    Inventors: Kristopher John Frutschy, James S. Lindsey, David Charles Bogdan, JR., James Thorpe Browell, Patrick Daniel Willson, Amin Ajdari, Narayan Subramanian, Michael Stanley Zanoni, Lukas Mercer Hansen
  • Publication number: 20170069885
    Abstract: The present disclosure is directed to an energy storage device having improved thermal performance. More specifically, the energy storage device includes a housing with side walls that define an internal volume. The side walls include bottom and front side walls, with the front side wall having an air inlet and outlet configured to circulate cooling air therethrough. The energy storage device also includes a plurality of cells arranged in a matrix within the internal volume atop the bottom side wall. Further, the cells define a top surface. Further, the energy storage device includes an exhaust manifold adjacent to the front side wall between at least a portion of the cells and the air inlet. Thus, the exhaust manifold is configured to direct airflow from the top surface towards the bottom side wall and then to the air outlet so as to provide an airflow barrier between cooling air entering the air inlet and the cells.
    Type: Application
    Filed: September 9, 2015
    Publication date: March 9, 2017
    Inventors: Michael Stanley Zanoni, Kenneth McClellan Rush, Christopher Richard Smith, James Thorpe Browell, Wenpeng Liu
  • Publication number: 20170062884
    Abstract: The present disclosure is directed to an improved energy storage device having a housing with one or more side walls that define an internal volume. The side walls include a bottom side wall and a front side wall having an air inlet and outlet. The energy storage device also includes a plurality of cells arranged in a matrix within the internal volume atop the bottom side wall. Further, the cells define a top surface. In addition, the energy storage device includes an airflow distribution network configured with the air inlet and the air outlet. Moreover, the airflow distribution network is at least partially sealed from the plurality of cells (e.g. at the front side wall) so as to reduce temperature variability across the cells when external air is provided through the air inlet.
    Type: Application
    Filed: September 2, 2015
    Publication date: March 2, 2017
    Inventors: Kristopher John Frutschy, James S. Lindsey, Kanthi Latha Bhamidipati, James Thorpe Browell, Ross M. Snyder, II
  • Patent number: 8916285
    Abstract: A cell module and modular cell tray apparatus for a modular electrochemical device that are more easily manufactured and serviced. A cell module is provided having a plurality of electrochemical cells. The cell module includes an electrically conductive carrier element having a plurality of apertures, wherein each aperture is configured to accept a top portion of an electrode body of an electrochemical cell. A modular cell tray apparatus is provided having a plurality of the cell modules. The cell tray apparatus includes an electrically insulating tray having rows of cell receptacles to accept the cell modules. A modular electrochemical device is provided having a plurality of the cell tray apparatuses. The modular electrochemical device includes a plurality of electrical connectors configured to electrically connect the cell modules within a cell tray apparatus, and to electrically connect the cell tray apparatuses to each other.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: December 23, 2014
    Assignee: General Electric Company
    Inventors: Kristopher John Frutschy, Reza Sarrafi-Nour, Stefan Rakuff, Sandor Istvan Hollo, Narayan Subramanian, William Patrick Waters, James Thorpe Browell, Kanthi Latha Bhamidipati
  • Publication number: 20130171507
    Abstract: A cell module and modular cell tray apparatus for a modular electrochemical device that are more easily manufactured and serviced. A cell module is provided having a plurality of electrochemical cells. The cell module includes an electrically conductive carrier element having a plurality of apertures, wherein each aperture is configured to accept a top portion of an electrode body of an electrochemical cell. A modular cell tray apparatus is provided having a plurality of the cell modules. The cell tray apparatus includes an electrically insulating tray having rows of cell receptacles to accept the cell modules. A modular electrochemical device is provided having a plurality of the cell tray apparatuses. The modular electrochemical device includes a plurality of electrical connectors configured to electrically connect the cell modules within a cell tray apparatus, and to electrically connect the cell tray apparatuses to each other.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Inventors: Kristopher John Frutschy, Reza Sarrafi-Nour, Stefan Rakuff, Sandor Istvan Hollo, Narayan Subramanian, William Patrick Waters, James Thorpe Browell, Kanthi Latha Bhamidipati