Patents by Inventor JAMES TYLER FRIX

JAMES TYLER FRIX has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230376938
    Abstract: Disclosed is a system and method for minting, aging, storing, grading, and trading NFT-based trading cards in a way that mimics that of “real” tangible trading cards. Embodiments of the solution may comprise generation of an NFT-based trading card asset by minting a nonfungible token (NFT) representative of an initial digital content operable to be visually displayed on a computing device. The minted NFT-based trading card asset is recorded on a blockchain and comprises a smart contract that includes a degradation algorithm, the degradation algorithm operable when executed to modify the initial digital content into a derivative digital content.
    Type: Application
    Filed: March 9, 2023
    Publication date: November 23, 2023
    Inventors: James Tyler Frix, Matthew Taylor Hoots, Richard Rivera, Justin Williams
  • Publication number: 20230289668
    Abstract: A system and method for using fractional ticketing manages access and attendance at an event hosted by the host platform or entity behind an NFT-based community. An NFT-based fractional ticketing system and method according to the solution may leverage the ability of an NFT-based community platform to airdrop NFT-based assets to members of its community. In an exemplary embodiment, every member of an NFT-based community may be airdropped a voucher or coupon associated with a limited attendance event organized by the community platform. The event may be live in nature (like a tailgate party before a college football game) or virtual in nature (such as an online symposium featuring a famous keynote speaker). The coupons may each be in the form of an NFT and, as such, uniquely identifiable with the NFT-based community and the event it organized and the digital wallet to which it was dropped.
    Type: Application
    Filed: March 9, 2023
    Publication date: September 14, 2023
    Inventors: James Tyler Frix, Jonathan Wallace
  • Patent number: 10869164
    Abstract: A system and method for monitoring and verifying athlete attendance in a classroom is disclosed. An exemplary embodiment defines a GPS-based fence in association with a classroom as well as defines a class start time and a class end time. GPS coordinates associated with a portable computing device (“PCD”) associated with a given athlete are received and determined to be within a range of coordinates associated with the fence. Also, a time associated with the receiving of the GPS coordinates is determined to be within a window of time comprising the class start time. Subsequently, a picture of a user is captured with a camera of the PCD. Next, from the picture the user is verified to be the given athlete. Finally, the given athlete is marked as “present” within the class.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: December 15, 2020
    Inventor: James Tyler Frix
  • Publication number: 20190086551
    Abstract: A system and method for monitoring and verifying athlete attendance in a classroom is disclosed. An exemplary embodiment defines a GPS-based fence in association with a classroom as well as defines a class start time and a class end time. GPS coordinates associated with a portable computing device (“PCD”) associated with a given athlete are received and determined to be within a range of coordinates associated with the fence. Also, a time associated with the receiving of the GPS coordinates is determined to be within a window of time comprising the class start time. Subsequently, a picture of a user is captured with a camera of the PCD. Next, from the picture the user is verified to be the given athlete. Finally, the given athlete is marked as “present” within the class.
    Type: Application
    Filed: November 6, 2018
    Publication date: March 21, 2019
    Inventor: James Tyler Frix
  • Patent number: 10145957
    Abstract: A system and method for monitoring and verifying athlete attendance in a classroom is disclosed. An exemplary embodiment defines a GPS-based fence in association with a classroom as well as defines a class start time and a class end time. GPS coordinates associated with a portable computing device (“PCD”) associated with a given athlete are received and determined to be within a range of coordinates associated with the fence. Also, a time associated with the receiving of the GPS coordinates is determined to be within a window of time comprising the class start time. Subsequently, a picture of a user is captured with a camera of the PCD. Next, from the picture the user is verified to be the given athlete. Finally, the given athlete is marked as “present” within the class.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: December 4, 2018
    Inventor: James Tyler Frix
  • Patent number: 9717464
    Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: August 1, 2017
    Inventors: James Tyler Frix, Andrew Johnson, James Mitchell Frix, Robert Andrew Taylor
  • Patent number: 9717448
    Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary embodiment of a continuous transdermal monitoring system comprises a sensor package. The sensor package may include a pulse oximetry sensor having a plurality of light detectors arranged as an array. One exemplary method for continuous transdermal monitoring begins by positioning a pulse oximetry sensor system, similar to the system described immediately above, adjacent to a target tissue segment. Then, the method continues by detecting a light reflected by the target tissue segment. Then, the method continues by transmitting a pulse oximetry reading(s), based at least in part on the light reflected by the target tissue segment, of the target tissue segment. Then, the method continues by analyzing the pulse oximetry reading(s).
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: August 1, 2017
    Inventors: James Tyler Frix, Andrew Johnson, James Mitchell Frix, Robert Andrew Taylor
  • Publication number: 20160228065
    Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.
    Type: Application
    Filed: April 18, 2016
    Publication date: August 11, 2016
    Inventors: JAMES TYLER FRIX, ANDREW JOHNSON, JAMES MITCHELL FRIX, ROBERT ANDREW TAYLOR
  • Publication number: 20160228044
    Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary embodiment of a continuous transdermal monitoring system comprises a sensor package. The sensor package may include a pulse oximetry sensor having a plurality of light detectors arranged as an array. One exemplary method for continuous transdermal monitoring begins by positioning a pulse oximetry sensor system, similar to the system described immediately above, adjacent to a target tissue segment. Then, the method continues by detecting a light reflected by the target tissue segment. Then, the method continues by transmitting a pulse oximetry reading(s), based at least in part on the light reflected by the target tissue segment, of the target tissue segment. Then, the method continues by analyzing the pulse oximetry reading(s).
    Type: Application
    Filed: April 19, 2016
    Publication date: August 11, 2016
    Inventors: JAMES TYLER FRIX, ANDREW JOHNSON, JAMES MITCHELL FRIX, ROBERT ANDREW TAYLOR
  • Patent number: 9339236
    Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary embodiment of a continuous transdermal monitoring system comprises a sensor package. The sensor package may include a pulse oximetry sensor having a plurality of light detectors arranged as an array. One exemplary method for continuous transdermal monitoring begins by positioning a pulse oximetry sensor system, similar to the system described immediately above, adjacent to a target tissue segment. Then, the method continues by detecting a light reflected by the target tissue segment. Then, the method continues by transmitting a pulse oximetry reading(s), based at least in part on the light reflected by the target tissue segment, of the target tissue segment. Then, the method continues by analyzing the pulse oximetry reading(s).
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: May 17, 2016
    Inventors: James Tyler Frix, Andrew Johnson, James Mitchell Frix, Robert Andrew Taylor
  • Patent number: 9339237
    Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: May 17, 2016
    Inventors: James Tyler Frix, Andrew Johnson, James Mitchell Frix, Robert Andrew Taylor
  • Publication number: 20160003624
    Abstract: A system and method for monitoring and verifying athlete attendance in a classroom is disclosed. An exemplary embodiment defines a GPS-based fence in association with a classroom as well as defines a class start time and a class end time. GPS coordinates associated with a portable computing device (“PCD”) associated with a given athlete are received and determined to be within a range of coordinates associated with the fence. Also, a time associated with the receiving of the GPS coordinates is determined to be within a window of time comprising the class start time. Subsequently, a picture of a user is captured with a camera of the PCD. Next, from the picture the user is verified to be the given athlete. Finally, the given athlete is marked as “present” within the class.
    Type: Application
    Filed: June 26, 2015
    Publication date: January 7, 2016
    Inventor: James Tyler Frix
  • Publication number: 20150305683
    Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.
    Type: Application
    Filed: July 9, 2015
    Publication date: October 29, 2015
    Inventors: JAMES TYLER FRIX, ANDREW JOHNSON, JAMES MITCHELL FRIX, ROBERT ANDREW TAYLOR
  • Patent number: 9107644
    Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: August 18, 2015
    Inventors: James Tyler Frix, Andrew Johnson, James Mitchell Frix, Robert Andrew Taylor
  • Publication number: 20150094551
    Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary embodiment of a continuous transdermal monitoring system comprises a sensor package. The sensor package may include a pulse oximetry sensor having a plurality of light detectors arranged as an array. One exemplary method for continuous transdermal monitoring begins by positioning a pulse oximetry sensor system, similar to the system described immediately above, adjacent to a target tissue segment. Then, the method continues by detecting a light reflected by the target tissue segment. Then, the method continues by transmitting a pulse oximetry reading(s), based at least in part on the light reflected by the target tissue segment, of the target tissue segment. Then, the method continues by analyzing the pulse oximetry reading(s).
    Type: Application
    Filed: December 9, 2014
    Publication date: April 2, 2015
    Inventors: JAMES TYLER FRIX, ANDREW JOHNSON, JAMES MITCHELL FRIX, ROBERT ANDREW TAYLOR
  • Publication number: 20150011854
    Abstract: Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.
    Type: Application
    Filed: July 7, 2014
    Publication date: January 8, 2015
    Inventors: JAMES TYLER FRIX, ANDREW JOHNSON, JAMES MITCHELL FRIX, ROBERT ANDREW TAYLOR