Patents by Inventor James Tyson

James Tyson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12071862
    Abstract: A vibration damping system includes a vibration damping element for a turbine nozzle or blade. A body opening extends through the turbine nozzle or blade between the tip end and the base end thereof, e.g., through the airfoil among potentially other parts of the nozzle or blade. A vibration damping element includes a plurality of stacked plate members within the body opening. Each plate member is in surface contact with at least one adjacent plate member to cause friction that dampens vibration of the nozzle or blade. The body opening has an inner dimension, and each plate member has an outer dimension sized to frictionally engage the inner dimension of the body opening to damp vibration. Plate members may each include a central opening therein, and a fixed elongated body or cable may extend through the central openings. The damping element may alternatively include a helical metal ribbon spring.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: August 27, 2024
    Assignee: GE Infrastructure Technology LLC
    Inventors: Zachary John Snider, John McConnell Delvaux, James Tyson Balkcum, Brian Denver Potter
  • Publication number: 20240050672
    Abstract: An oxygen hose disconnection alert device which connects to an oxygen supply line and notifies a patient or caretaker if the oxygen supply line becomes disconnected. The device may be used to couple two oxygen hoses together, to connect an oxygen hose to an oxygen supply source, or to connect an oxygen hose to an oxygen delivery device.
    Type: Application
    Filed: August 15, 2023
    Publication date: February 15, 2024
    Inventor: James Tyson Blackburn
  • Publication number: 20240035387
    Abstract: A vibration damping system includes a vibration damping element for a turbine nozzle or blade. A body opening extends through the turbine nozzle or blade between the tip end and the base end thereof, e.g., through the airfoil among potentially other parts of the nozzle or blade. A vibration damping element includes a plurality of stacked plate members within the body opening. Each plate member is in surface contact with at least one adjacent plate member to cause friction that dampens vibration of the nozzle or blade. The body opening has an inner dimension, and each plate member has an outer dimension sized to frictionally engage the inner dimension of the body opening to damp vibration. Plate members may each include a central opening therein, and a fixed elongated body or cable may extend through the central openings. The damping element may alternatively include a helical metal ribbon spring.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 1, 2024
    Inventors: Zachary John Snider, John McConnell Delvaux, James Tyson Balkcum, III, Brian Denver Potter
  • Patent number: 11339665
    Abstract: The present embodiments set forth a blade including an airfoil, the airfoil including a tip cap, a pressure sidewall and a suction sidewall extending axially between corresponding leading and trailing edges and radially between the base and the tip cap. The blade, including the airfoil and base, being formed in at least two airfoil parts, each of the two airfoil parts including contacting edges engaging each other respective contacting edges, the contacting edges defining a joint for preloading each of the at least two parts with each other and with the base. The at least two airfoil parts forming the airfoil being retained to each other by an interference fit at the joint. The interference fit providing frictional damping of vibrations in the blade during blade operation.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: May 24, 2022
    Assignee: General Electric Company
    Inventors: Andrew Clifford Hart, Jing Li, Suryarghya Chakrabarti, James Tyson Balkcum, III, Markus Feigl
  • Patent number: 11255198
    Abstract: A tip shroud for a turbine blade of a gas turbine system includes a body coupled to a radial outer end of an airfoil of the turbine blade. The tip shroud may include at least one circumferentially extending tip rail. A first edge wall of the tip shroud extends axially and radially outwardly from the body along at least one of a leading circumferential-facing edge or a trailing circumferential-facing edge of the body and includes a circumferentially facing surface. Cooling passages are defined in the body and extend circumferentially therein to cool an area near the first edge wall. The tip shroud includes an exit surface adjacent the first edge wall, where the exit surface includes an exit opening through which at least one of cooling passages exits the body. The exit surface is angled relative to the circumferentially facing surface of the first edge wall in a range of 15° to 80°.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: February 22, 2022
    Assignee: General Electric Company
    Inventors: William Scott Zemitis, James Tyson Balkcum, III
  • Publication number: 20210285330
    Abstract: The present embodiments set forth a blade including an airfoil, the airfoil including a tip cap, a pressure sidewall and a suction sidewall extending axially between corresponding leading and trailing edges and radially between the base and the tip cap. The blade, including the airfoil and base, being formed in at least two airfoil parts, each of the two airfoil parts including contacting edges engaging each other respective contacting edges, the contacting edges defining a joint for preloading each of the at least two parts with each other and with the base. The at least two airfoil parts forming the airfoil being retained to each other by an interference fit at the joint. The interference fit providing frictional damping of vibrations in the blade during blade operation.
    Type: Application
    Filed: March 12, 2020
    Publication date: September 16, 2021
    Inventors: Andrew Clifford Hart, Jing Li, Suryarghya Chakrabarti, James Tyson Balkcum, III, Markus Feigl
  • Patent number: 10648347
    Abstract: A rotor assembly includes plural blades and damping inserts. The blades include a carrier shroud and a lid shroud extending from an airfoil of the respective blade in generally opposite directions. The carrier shrouds define pockets at distal ends thereof. The damping inserts are disposed in the pockets of the carrier shrouds of the blades and free-floating within the pockets. The damping inserts are configured to dampen vibrations of the blades during rotation of the blades and the rotor disk via engaging an interior surface within the corresponding pocket of the carrier shroud and engaging a distal end of the lid shroud of the neighboring blade. A contact force applied by each damping insert on the distal end of the lid shroud of the neighboring blade is based on a rotational speed of the blades and the rotor disk.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: May 12, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Suryarghya Chakrabarti, Brian Potter, Andrew Grafitti, James Tyson Balkcum, III
  • Patent number: 10472974
    Abstract: In one aspect, the present disclosure is directed to a rotor blade for a turbomachine. The rotor blade includes an airfoil defining at least one cooling passage. The rotor blade also includes a tip shroud coupled to the airfoil. The tip shroud and the airfoil define a core fluidly coupled to the cooling passage. A maximum radial depth of the core is at least six times greater than a minimum hydraulic diameter of a largest cooling passage of the at least one cooling passage.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: November 12, 2019
    Assignee: General Electric Company
    Inventors: Mark Andrew Jones, James Tyson Balkcum, III
  • Patent number: 10458342
    Abstract: A system for controlling a gas turbine power plant includes a plurality of sensors configured to transmit signals indicative of one or more operating parameters of the gas turbine, and a control system in electronic communication with each sensor. The control system is configured to compute cumulative wear for one or more hardware components of the gas turbine based at least in part on the signals. Instructions are inputted into the control system which indicates a desired operational mode for the gas turbine. The control system may then compute a hardware consumption rate based at least in part on the cumulative wear. The hardware consumption rate may then be displayed to an operator via a display device. The operator may use the hardware consumption rate to determine potential economic impact of operating the gas turbine at the desired operational mode.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: October 29, 2019
    Assignee: General Electric Company
    Inventors: Rex Allen Morgan, James Tyson Balkcum, III, Stephen R. Watts, Harold Lamar Jordan, Jr., Brad Wilson VanTassel
  • Patent number: 10184342
    Abstract: A turbine blade includes a tip shroud having a seal rail. The seal rail includes a tangential surface extending between tangential ends. The turbine blade includes a root portion configured to couple to a rotor and an airfoil portion extending between the root portion and the tip shroud. The seal rail includes a cooling passage extending along a length of the seal rail. The cooling passage is fluidly coupled to a cooling plenum to receive a cooling fluid via an intermediate cooling passage extending between the cooling passage and a cooling plenum. The seal rail includes cooling outlet passages fluidly coupled to the cooling passage. The cooling outlet passages are disposed within the seal rail and extend between the cooling passage and the tangential surface of the seal rail. The cooling outlet passages are configured to discharge the cooling fluid from the tip shroud via the tangential surface.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: January 22, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Xiuzhang James Zhang, James Tyson Balkcum, III, Ian Darnall Reeves, Joseph Anthony Cotroneo
  • Publication number: 20190003320
    Abstract: The present disclosure is directed to a rotor blade for a turbomachine. The rotor blade includes an airfoil defining a cooling passage and a tip shroud coupled to the airfoil. The tip shroud and the airfoil define a cooling core in fluid communication with the cooling passage. The tip shroud including a forward exterior wall, an aft exterior wall spaced apart from the forward exterior wall along an axial direction, a radially inner exterior wall, a radially outer exterior wall spaced apart from the radially inner wall along a radial direction, a pressure side wall, and a suction side wall spaced apart from the pressure side wall along a circumferential direction. The tip shroud further includes first and second interior walls positioned within the cooling core. The first interior wall is non-coplanar with the second interior wall in the axial, radial, and circumferential directions.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 3, 2019
    Inventors: Robert Alan Brittingham, James Tyson Balkcum, III
  • Publication number: 20180230813
    Abstract: In one aspect, the present disclosure is directed to a rotor blade for a turbomachine. The rotor blade includes an airfoil defining at least one cooling passage. The rotor blade also includes a tip shroud coupled to the airfoil. The tip shroud and the airfoil define a core fluidly coupled to the cooling passage. A maximum radial depth of the core is at least six times greater than a minimum hydraulic diameter of a largest cooling passage of the at least one cooling passage.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: Mark Andrew Jones, James Tyson Balkcum, III
  • Publication number: 20180230818
    Abstract: A rotor assembly includes plural blades and damping inserts. The blades include a carrier shroud and a lid shroud extending from an airfoil of the respective blade in generally opposite directions. The carrier shrouds define pockets at distal ends thereof. The damping inserts are disposed in the pockets of the carrier shrouds of the blades and free-floating within the pockets. The damping inserts are configured to dampen vibrations of the blades during rotation of the blades and the rotor disk via engaging an interior surface within the corresponding pocket of the carrier shroud and engaging a distal end of the lid shroud of the neighboring blade. A contact force applied by each damping insert on the distal end of the lid shroud of the neighboring blade is based on a rotational speed of the blades and the rotor disk.
    Type: Application
    Filed: January 3, 2017
    Publication date: August 16, 2018
    Inventors: Suryarghya Chakrabarti, Brian Potter, Andrew Grafitti, James Tyson Balkcum, III
  • Patent number: 9845690
    Abstract: This disclosure provides systems and methods for sealing flow path components, such as turbomachine airfoils, with a front-leaded seal. A seal channel is defined between a portion of the suction side surface of a first flow path component and a portion of the pressure side of a second flow path component. A seal is retained within the seal channel formed by the pressure side portion and the suction side portion and the seal channel defines a forward opening through which the seal is inserted during installation.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: December 19, 2017
    Assignee: General Electric Company
    Inventors: Andrew Paul Giametta, James Tyson Balkcum, III, David Richard Johns, Stephen Paul Wassynger
  • Publication number: 20170350263
    Abstract: This disclosure provides systems and methods for sealing flow path components, such as turbomachine airfoils, with a front-leaded seal. A seal channel is defined between a portion of the suction side surface of a first flow path component and a portion of the pressure side of a second flow path component. A seal is retained within the seal channel formed by the pressure side portion and the suction side portion and the seal channel defines a forward opening through which the seal is inserted during installation.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 7, 2017
    Inventors: Andrew Paul Giametta, James Tyson Balkcum, III, David Richard Johns, Stephen Paul Wassynger
  • Publication number: 20170328203
    Abstract: A turbine assembly includes a rotary component rotatable about an axis of a turbine, a plurality of inner wall segments coupled to the rotary component circumferentially around the rotary component and rotatable with the rotary component, a non-rotary component circumferentially surrounding the rotary component, a plurality of outer wall segments coupled to the non-rotary component and disposed to extend toward the rotary component, and a plurality of nozzles extending from each of the outer wall segments, each nozzle having a tip distal from the outer wall segment such that the tips form a seal with the inner wall segments at an inner flow path of the turbine. An inner wall assembly and a turbine assembly method are also disclosed.
    Type: Application
    Filed: May 10, 2016
    Publication date: November 16, 2017
    Inventors: James ZHANG, James Tyson BALKCUM, III, John McConnell DELVAUX, Matthew Troy HAFNER
  • Publication number: 20170298744
    Abstract: A turbine blade includes a tip shroud having a seal rail. The seal rail includes a tangential surface extending between tangential ends. The turbine blade includes a root portion configured to couple to a rotor and an airfoil portion extending between the root portion and the tip shroud. The seal rail includes a cooling passage extending along a length of the seal rail. The cooling passage is fluidly coupled to a cooling plenum to receive a cooling fluid via an intermediate cooling passage extending between the cooling passage and a cooling plenum. The seal rail includes cooling outlet passages fluidly coupled to the cooling passage. The cooling outlet passages are disposed within the seal rail and extend between the cooling passage and the tangential surface of the seal rail. The cooling outlet passages are configured to discharge the cooling fluid from the tip shroud via the tangential surface.
    Type: Application
    Filed: April 14, 2016
    Publication date: October 19, 2017
    Inventors: Xiuzhang James Zhang, James Tyson Balkcum, III, Ian Darnall Reeves, Joseph Anthony Cotroneo
  • Patent number: 9047329
    Abstract: In one aspect, a device is configured to provide a lookup operation for looking up a data value stored in a result table. The device includes several data tables for storing keys, or compressed representations of keys, associated with data values stored in the result table. During an example lookup operation, storage locations included within the data tables are searched for a particular key, or compressed representations of the key. If the key is found, the storage location is used to identify a memory address associated with the result table. In some implementations, the data tables are accessed in parallel to provide a lookup operation having a fixed latency. Storage locations within the data tables also are arranged to reduce the amount of memory used to implement each data table. In some implementations, the data tables are configured to use no more than one result table access per lookup operation.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: June 2, 2015
    Assignee: Altera Corporation
    Inventor: James Tyson
  • Publication number: 20150081121
    Abstract: A system for controlling a gas turbine power plant includes a plurality of sensors configured to transmit signals indicative of one or more operating parameters of the gas turbine, and a control system in electronic communication with each sensor. The control system is configured to compute cumulative wear for one or more hardware components of the gas turbine based at least in part on the signals. Instructions are inputted into the control system which indicates a desired operational mode for the gas turbine. The control system may then compute a hardware consumption rate based at least in part on the cumulative wear. The hardware consumption rate may then be displayed to an operator via a display device. The operator may use the hardware consumption rate to determine potential economic impact of operating the gas turbine at the desired operational mode.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 19, 2015
    Inventors: Rex Allen Morgan, James Tyson Balkcum, III, Stephen R. Watts, Harold Lamar Jordan, JR., Brad Wilson VanTassel
  • Patent number: 8874866
    Abstract: Embodiments of the present invention provide methods of reading data from and writing data to a memory, computer program products for performing such methods, and apparatus for reading data from and writing data to, a memory, which apparatus may be implemented, for example, as a Field Programmable Gate Array (FPGA). A key associated with data to be read from or written to the memory is converted into two separate values, which values are themselves converted into first and second index values, each having an associated signature value. The index values are used as indices to a signature table containing a signature value for each data entry stored in the memory from which data is to be read or to which data is to be written. In a read operation, a signature of the signature table which matches one of the signature values derived from the key is identified and a read address is calculated based on the index value associated with the matching signature value derived from the key.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: October 28, 2014
    Assignee: Altera Corporation
    Inventor: James Tyson