Patents by Inventor James W. Cady

James W. Cady has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7768796
    Abstract: A flex circuit is populated on one or both sides with plural integrated circuit die. In a preferred mode, the flex circuit is populated with flip-chip die. One side of the flex circuit has a connective facility implemented in a preferred mode with edge connector contacts. The flex circuit is disposed about a substrate to form a circuit module that may be inserted into an edge connector such as ones typically found on a computer board.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: August 3, 2010
    Assignee: Entorian Technologies L.P.
    Inventors: James W. Cady, Paul Goodwin
  • Patent number: 7626273
    Abstract: The present invention provides a system and method that mounts integrated circuit devices onto substrates and a system and method for employing the method in stacked modules. The contact pads of a packaged integrated circuit device are substantially exposed. A solder paste that includes higher temperature solder paste alloy is applied to a substrate or to the integrated circuit device to be mounted. The integrated circuit device is positioned to contact the contacts of the substrate. Heat is applied to create high temperature joints between the contacts of the substrate and the integrated circuit device resulting in a device-substrate assembly with high temperature joints. The formed joints are less subject to re-melting in subsequent processing steps. The method may be employed in devising stacked module constructions such as those disclosed herein as preferred embodiments in accordance with the invention. Typically, the created joints are low in profile.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: December 1, 2009
    Assignee: Entorian Technologies, L.P.
    Inventors: Julian Partridge, James W. Cady, James Wilder, David L. Roper, James Douglas Wehrly, Jr.
  • Publication number: 20090273069
    Abstract: The present invention stacks chip scale-packaged integrated circuits (CSPs) into low profile modules that conserve PWB or other board surface area. Low profile structures provide connection between CSPs of the stacked module and between and to the flex circuitry. Low profile contacts are created by any of a variety of methods and materials including, for example, screen paste techniques and use of high temperature solders, although other application techniques and traditional solders may be employed for creating low profile contacts in the present invention. A consolidated low profile contact structure and technique is provided for use in alternative embodiments of the present invention. The CSPs employed in stacked modules devised in accordance with the present invention are connected with flex circuitry. That flex circuitry may exhibit one or two or more conductive layers.
    Type: Application
    Filed: May 7, 2009
    Publication date: November 5, 2009
    Inventors: James W. Cady, Julian Partridge, James Douglas Wehrly, JR., James Wilder
  • Patent number: 7606050
    Abstract: A flexible circuit is populated on one or both sides and disposed about a substrate to create a circuit module. Along one of its edges, the flex circuit is connected to a connective facility such as a multiple pin connector while the flex circuit is disposed about a thermally-conductive form that provides structure to create a module with plural layers of circuitry in a single module. In preferred embodiments, the form is metallic and, in alternative preferred embodiments, the module circuitry is disposed within a housing. Preferred embodiments may be devised that present a compact flash module within a housing that may be connected to or into a system or product through a connective facility that is preferably a male or female socket connector while the housing is configured to mechanically adapt to an application environment.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: October 20, 2009
    Assignee: Entorian Technologies, LP
    Inventors: James W. Cady, James Douglas Wehrly, Jr., Paul Goodwin
  • Patent number: 7606048
    Abstract: The present invention stacks packaged integrated circuits into modules that conserve PWB or other board surface area. The present invention can be used to advantage with packages of a variety of sizes and configurations ranging from larger packaged base elements having many dozens of contacts to smaller packages such as, for example, die-sized packages such as DSBGA. In a preferred embodiment devised in accordance with the present invention, a base element CSP integrated circuit and a support element CSP integrated circuit are aggregated through a flex circuit having at least two conductive layers that are patterned to selectively connect the two CSP elements. A portion of the flex circuit connected to the support element is folded over the base element to dispose the support element above the base element while reducing the overall footprint. The flex circuit provides a thermal and electrical connection path between the module and an application environment such as a printed wiring board (PWB).
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: October 20, 2009
    Assignee: Enthorian Technologies, LP
    Inventors: James W. Cady, James Wilder, David L. Roper, Russell Rapport, James Douglas Wehrly, Jr., Jeffrey Alan Buchle
  • Patent number: 7606049
    Abstract: A circuit module shunts thermal energy into a chassis component or a part of the box of the computing application in which the module is employed. In one preferred mode, a flex circuit is populated along each of its first and second major sides with two ranks of ICs which are, preferably, array type (CSP) devices. Insertion contacts are disposed in two sets on the first side of the flex circuit typically between the two ranks of ICs along the first side of the IC. A substrate with first and second lateral sides provides a form for the module. That substrate is preferably comprised of metallic material and exhibits an edge about which the flex circuit is wrapped and an extension at the other extremity of the substrate that is thermally connected to a chassis component of the application, either directly or, preferably, through a thermal conduit such as a thermally conductive compliant material.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: October 20, 2009
    Assignee: Entorian Technologies, LP
    Inventors: Paul Goodwin, James W. Cady
  • Patent number: 7602613
    Abstract: A flexible circuit has contacts for mounting in a socket or card edge connector. The flexible circuit includes integrated circuit devices mounted on both sides of the edge connector contacts. Preferably, the flexible circuit is wrapped about an edge of a rigid substrate and presents contacts on both sides of the substrate for mounting in a socket. Multiple flexible circuits may be overlaid with the same strategy. The flexible circuit may exhibit one or two or more conductive layers, and may have changes in the layered structure or have split layers.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: October 13, 2009
    Assignee: Entorian Technologies, LP
    Inventors: Paul Goodwin, James W. Cady, Douglas Wehrly
  • Patent number: 7595550
    Abstract: A form standard provides a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design that is disposed about the form. In a preferred embodiment, the form standard will be devised of heat transference material such as copper to improve thermal performance.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: September 29, 2009
    Assignee: Entorian Technologies, LP
    Inventors: James W. Cady, James Wilder, David L. Roper, James Douglas Wehrly, Jr.
  • Patent number: 7586758
    Abstract: The present invention stacks packaged integrated circuits into modules that conserve PWB or other board surface area. The present invention can be used to advantage with packages of a variety of sizes and configurations ranging from larger packaged base elements having many dozens of contacts to smaller packages such as, for example, die-sized packages such as DSBGA. In a preferred embodiment devised in accordance with the present invention, a base element CSP integrated circuit and a support element CSP integrated circuit are aggregated through a flex circuit having at least two conductive layers that are patterned to selectively connect the two CSP elements. A portion of the flex circuit connected to the support element is folded over the base element to dispose the support element above the base element while reducing the overall footprint. The flex circuit provides a thermal and electrical connection path between the module and an application environment such as a printed wiring board (PWB).
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: September 8, 2009
    Assignee: Entorian Technologies, LP
    Inventors: James W. Cady, James Wilder, David L. Roper, Russell Rapport, James Douglas Wehrly, Jr., Jeffrey Alan Buchle
  • Patent number: 7542304
    Abstract: The present invention stacks integrated circuits (ICs) into modules that conserve PWB or other board surface area. In another aspect, the invention provides a lower capacitance memory expansion addressing system and method and preferably with the CSP stacked modules provided herein. In a preferred embodiment in accordance with the invention, a form standard provides a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design. In a preferred embodiment, the form standard will be devised of heat transference material such as copper to improve thermal performance. In a preferred embodiment of the memory addressing system, a high speed switching system selects a data line associated with each level of a stacked module to reduce the loading effect upon data signals in memory access.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: June 2, 2009
    Assignee: Entorian Technologies, LP
    Inventors: Russell Rapport, James W. Cady, James Wilder, David L. Roper, James Douglas Wehrly, Jr., Jeff Buchle
  • Publication number: 20090124045
    Abstract: The present invention provides a system and method that mounts integrated circuit devices onto substrates and a system and method for employing the method in stacked modules. The contact pads of a packaged integrated circuit device are substantially exposed. A solder paste that includes higher temperature solder paste alloy is applied to a substrate or to the integrated circuit device to be mounted. The integrated circuit device is positioned to contact the contacts of the substrate. Heat is applied to create high temperature joints between the contacts of the substrate and the integrated circuit device resulting in a device-substrate assembly with high temperature joints. The formed joints are less subject to re-melting in subsequent processing steps. The method may be employed in devising stacked module constructions such as those disclosed herein as preferred embodiments in accordance with the invention. Typically, the created joints are low in profile.
    Type: Application
    Filed: January 20, 2009
    Publication date: May 14, 2009
    Inventors: Julian Partridge, James W. Cady, James Wilder, David L. Roper, James Douglas Wehrly, JR.
  • Patent number: 7524703
    Abstract: The present invention stacks integrated circuits (ICs) into modules that conserve PWB or other board surface area. In another aspect, the invention provides a lower capacitance memory expansion addressing system and method and preferably with the CSP stacked modules provided herein. In a preferred embodiment in accordance with the invention, a form standard provides a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design. In a preferred embodiment, the form standard will be devised of heat transference material such as copper to improve thermal performance. In an alternative embodiment, the form standard may include a heat spreader portion with mounting feet. In a preferred embodiment of the memory addressing system, a high speed switching system selects a data line associated with each level of a stacked module to reduce the loading effect upon data signals in memory access.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: April 28, 2009
    Assignee: Entorian Technologies, LP
    Inventors: James W. Cady, James Wilder, David L. Roper, James Douglas Wehrly, Jr.
  • Patent number: 7495334
    Abstract: The present invention stacks chip scale-packaged integrated circuits (CSPs) into modules that conserve PWB or other board surface area. In a two-high CSP stack or module devised in accordance with a preferred embodiment of the present invention, two CSPs are stacked, with one CSP disposed above the other. The two CSPs are connected with flex circuitry. A form standard is disposed between the flex circuitry and a CSP in the stack. The form standard can take many configurations and may be used where flex circuits are used to connect CSPs to one another in stacked modules having two or more constituent CSPs. For example, in stacked modules that include four CSPs, three form standards are employed in preferred embodiments, although fewer may be used. The form standard provides a thermally conductive physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: February 24, 2009
    Assignee: Entorian Technologies, LP
    Inventors: Russell Rapport, James W. Cady, James Wilder, David L. Roper, James Douglas Wehrly, Jr., Jeff Buchle, Julian Dowden
  • Publication number: 20080278924
    Abstract: A flex circuit is populated on one or both sides with plural integrated circuit die. In a preferred mode, the flex circuit is populated with flip-chip die. One side of the flex circuit has a connective facility implemented in a preferred mode with edge connector contacts. The flex circuit is disposed about a substrate to form a circuit module that may be inserted into an edge connector such as ones typically found on a computer board.
    Type: Application
    Filed: June 26, 2008
    Publication date: November 13, 2008
    Inventors: James W. Cady, Paul Goodwin
  • Patent number: 7423885
    Abstract: A flex circuit is populated on one or both sides with plural integrated circuit die. In a preferred mode, the flex circuit is populated with flip-chip die. One side of the flex circuit has a connective facility implemented in a preferred mode with edge connector contacts. The flex circuit is disposed about a substrate to form a circuit module that may be inserted into an edge connector such as ones typically found on a computer board.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: September 9, 2008
    Assignee: Entorian Technologies, LP
    Inventors: James W. Cady, Paul Goodwin
  • Publication number: 20080211077
    Abstract: The present invention stacks chip scale-packaged integrated circuits (CSPs) into low profile modules that conserve PWB or other board surface area. Low profile structures provide connection between CSPs of the stacked module and between and to the flex circuitry. Low profile contacts are created by any of a variety of methods and materials including, for example, screen paste techniques and use of high temperature solders, although other application techniques and traditional solders may be employed for creating low profile contacts in the present invention. A consolidated low profile contact structure and technique is provided for use in alternative embodiments of the present invention. The CSPs employed in stacked modules devised in accordance with the present invention are connected with flex circuitry. That flex circuitry may exhibit one or two or more conductive layers.
    Type: Application
    Filed: May 11, 2006
    Publication date: September 4, 2008
    Inventors: James W. Cady, Julian Partridge, James Douglas Wehrly, James Wilder, David L. Roper, Jeffrey Alan Buchle
  • Patent number: 7335975
    Abstract: The present invention stacks packaged integrated circuits into modules that conserve PWB or other board surface area. The invention provides techniques and structures for aggregating chip scale-packaged integrated circuits (CSPs) or leaded packages with other CSPs or with monolithic or stacked leaded packages into modules that conserve PWB or other board surface area. The present invention can be used to advantage with packages of a variety of sizes and configurations ranging from larger packaged base elements having many dozens of contacts to smaller packages such as, for example, die-sized packages such as DSBGA. In a preferred embodiment devised in accordance with the present invention, a base element CSP and a support element CSP are aggregated through a flex circuit having at least two conductive layers that are patterned to selectively connect the two CSP elements.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: February 26, 2008
    Assignee: Staktek Group L.P.
    Inventors: James W. Cady, James Wilder, David L. Roper, Russell Rapport, James Douglas Wehrly, Jr., Jeffrey Alan Buchle
  • Patent number: 7256484
    Abstract: The present invention stacks chip scale-packaged integrated circuits (CSPs) into modules that conserve PWB or other board surface area. In another aspect, the invention provides a lower capacitance memory expansion addressing system and method and preferably with the CSP stacked modules provided herein. In a preferred embodiment in accordance with the invention, a form standard is disposed between the flex circuitry and the IC package over which a portion of the flex circuitry is laid. The form standard provides a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design. In a preferred embodiment, the form standard will be devised of heat transference material such as copper to improve thermal performance.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: August 14, 2007
    Assignee: Staktek Group L.P.
    Inventors: Russell Rapport, James W. Cady, James Wilder, David L. Roper, James Douglas Wehrly, Jr., Jeff Buchle
  • Patent number: 7202555
    Abstract: The present invention stacks integrated circuits into modules that conserve board surface area. In a two-high stack or module devised in accordance with a preferred embodiment of the present invention, a pair of integrated circuits is stacked, with one integrated circuit above the other. The two integrated circuits are connected with a pair of flexible circuit structures. Each of the pair of flexible circuit structures is partially wrapped about a respective opposite lateral edge of the lower integrated circuit of the module. The flex circuit pair connects the upper and lower integrated circuits and provides a thermal and electrical path connection path between the module and its application environment. The module has a bailout pattern with a different pitch and/or supplemental module contacts devised to allow combined signaling to the integrated circuits through contacts having a desired ballout footprint.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: April 10, 2007
    Assignee: Staktek Group L.P.
    Inventors: David L. Roper, James W. Cady, James Wilder, James Douglas Wehrly, Jr., Jeff Buchle, Julian Dowden
  • Patent number: 7180167
    Abstract: The present invention provides a system and method that mounts integrated circuit devices onto substrates and a system and method for employing the method in stacked modules. The contact pads of a packaged integrated circuit device are substantially exposed. A solder paste that includes higher temperature solder paste alloy is applied to a substrate or to the integrated circuit device to be mounted. The integrated circuit device is positioned to contact the contacts of the substrate. Heat is applied to create high temperature joints between the contacts of the substrate and the integrated circuit device resulting in a device-substrate assembly with high temperature joints. The formed joints are less subject to re-melting in subsequent processing steps. The method may be employed in devising stacked module constructions such as those disclosed herein as preferred embodiments in accordance with the invention. Typically, the created joints are low in profile.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: February 20, 2007
    Assignee: Staktek Group L. P.
    Inventors: Julian Partridge, James W. Cady, James Wilder, David L. Roper, James Douglas Wehrly, Jr.