Patents by Inventor James W. Fleming, Jr.

James W. Fleming, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5578106
    Abstract: In accordance with the invention, a plurality of elongated refractory bodies are laminated together by placing the bodies in close adjacency, exposing the adjacent bodies to a plasma torch heat source, and moving the bodies longitudinal past the torch at a nonzero average rate which includes a reciprocating (e.g., oscillatory) component to longitudinally spread the zone of heating. Where the bodies are a rod to be laminated within a hollow tube, it is advantageous to reduce the air pressure between the rod and tube, thereby eliminating potential contaminants and, at the same time, biasing the tube to collapse against the rod. This method is particularly useful in laminating overcladding tubes to core rods to form optical fiber preforms.
    Type: Grant
    Filed: August 17, 1995
    Date of Patent: November 26, 1996
    Assignee: Lucent Technologies Inc.
    Inventors: James W. Fleming, Jr., Adolph H. Moesle, Jr.
  • Patent number: 5565014
    Abstract: Sol-gel processing of a silica glass body is facilitated by rapid drying. The body, having been heated to a temperature of about 200.degree. C. in a hermetically sealed vessel, is vented while reducing temperature. Termination of drying coincides with reduction to atmospheric pressure.
    Type: Grant
    Filed: March 31, 1994
    Date of Patent: October 15, 1996
    Assignee: Lucent Technologies Inc.
    Inventor: James W. Fleming, Jr.
  • Patent number: 5562752
    Abstract: Heating a wet colloidal gel body in an autoclave above its 1-atmosphere boiling point, under rigorously defined conditions, avoids shrinkage during subsequent drying. As a consequence, drying rates may be increased, and handling care becomes less critical.
    Type: Grant
    Filed: March 31, 1994
    Date of Patent: October 8, 1996
    Assignee: Lucent Technologies Inc.
    Inventor: James W. Fleming, Jr.
  • Patent number: 5364427
    Abstract: Bent sol-gel produced tubing is straightened by drawing, with tensile force and operating temperature to result in minimal plastic flow, so that size reduction is small. The method is usefully applied to reject recovery in the preparation of overclad tubes, which as encompassing closely-fitting core rods, form the composite preform from which optical fiber is drawn.
    Type: Grant
    Filed: July 16, 1993
    Date of Patent: November 15, 1994
    Assignee: AT&T Bell Laboratories
    Inventor: James W. Fleming, Jr.
  • Patent number: 5308947
    Abstract: An induction furnace for reflowing a portion of an optical preform in order to draw a lightguide fiber therefrom. The furnace has an axially located tubular iridium susceptor which is centrally disposed within a beaker and a sleeve is positioned concentrically around the susceptor. The sleeve is surrounded by an insulating grain. A high frequency coil is energized to couple its electromagnetic field to the iridium susceptor to heat and reflow a portion of the preform in order to draw the fiber therefrom. The furnace housing is sealed to provide an inert, non-oxidizing atmosphere for the iridium susceptor.
    Type: Grant
    Filed: February 25, 1993
    Date of Patent: May 3, 1994
    Assignee: AT&T Bell Laboratories
    Inventor: James W. Fleming, Jr.
  • Patent number: 5221306
    Abstract: The transverse cross section of a body is modified by the steps of: a) determining the extent to which the body has material in excess of a desired shape at a plurality of points, b) exposing the body to a local heat source having a temperature sufficiently high to remove material from the surface of the body, and c) moving the surface of the body in relation to the source at a speed which decreases in regions where the body has material in excess of the desired shape so as to remove more material from such regions than from other regions. In a preferred embodiment, the body is an optical fiber preform, the local heat source is the fireball of a plasma torch, and the body is moved relative to the torch by rotating the preform at a controllable angular velocity while the torch is translated along the length of the preform.
    Type: Grant
    Filed: October 31, 1990
    Date of Patent: June 22, 1993
    Assignee: AT&T Bell Laboratories
    Inventors: James W. Fleming, Jr., Adolph H. Moesle, Jr., Fred P. Partus
  • Patent number: 5000771
    Abstract: To attain high strength optical glass fibers, the glass preforms, from which the fibers are drawn, must generally be free of surface imperfections such as bubbles, and air lines. It has been discovered that these imperfections can be removed quickly and cleanly by contacting the preform surface with a substantial portion of the electrically conducting plasma region (the plasma fireball) extending from a plasma torch. Significantly, the surface material is substantially removed by vaporization, due to the extremely high plasma temperature (>9000.degree. C. at the plasma center) of the isothermal plasma torch. Though the temperatures in the tail of the plasma fireball are substantially less than at the plasma center, the temperatures are generally still several thousand degrees centigrade.
    Type: Grant
    Filed: December 29, 1989
    Date of Patent: March 19, 1991
    Assignee: AT&T Bell Laboratories
    Inventors: James W. Fleming, Jr., Fred P. Partus
  • Patent number: 4477580
    Abstract: Optical components using a germania-silica glass are made by a gel technique. Tetra pentyloxygermane and a silicon alkoxide are hydrolyzed to form a gel, which is subsequently dried. Optical components, including optical fibers and devices, can be made using glass prepared by this technique.
    Type: Grant
    Filed: September 28, 1982
    Date of Patent: October 16, 1984
    Assignee: AT&T Bell Laboratories
    Inventor: James W. Fleming, Jr.
  • Patent number: 4379616
    Abstract: Aluminum metaphosphate optical fibers are disclosed. In a specific embodiment, aluminum metaphosphate, doped with from 10 to 30 mole percent of diboron trioxide, is found to yield an optical fiber which combines the desirable properties of both high numerical aperture and low material dispersion. The fiber is nonhygroscopic and has a high melting temperature. The index of refraction of the glass may be lowered by doping with silicon dioxide. Consequently, a graded fiber may be made by increasing the concentration of silicon oxide from the core to the cladding.
    Type: Grant
    Filed: May 1, 1981
    Date of Patent: April 12, 1983
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: James W. Fleming, Jr., John W. Shiever
  • Patent number: 4331462
    Abstract: Optical fiber preforms are produced by means of a duplex hot zone, a section of which is defined by an r.f. generated plasma fire ball. The process operates within a tube with gaseous precursor material reacting within the hot zone to result in deposited material of the desired preform glass composition. A "smoothing" region within the hot zone is defined by tube surface at a temperature sufficiently elevated to consolidate any particulate material resulting from reaction. In some aspects, the disclosed procedures may be regarded as Modified Chemical Vapor Deposition. Commercial significance resides in significantly increased throughput of preforms and, consequently, in fiber.
    Type: Grant
    Filed: April 25, 1980
    Date of Patent: May 25, 1982
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: James W. Fleming, Jr., John B. MacChesney, Paul B. O'Connor
  • Patent number: 4302074
    Abstract: Aluminum metaphosphate optical fibers are disclosed. In a specific embodiment, aluminum metaphosphate, doped with from 10 to 30 mole percent of diboron trioxide, is found to yield an optical fiber which combines the desirable properties of both high numerical aperture and low material dispersion. The fiber is nonhygroscopic and has a high melting temperature. The index of refraction of the glass may be lowered by doping with silicon dioxide. Consequently, a graded fiber may be made by increasing the concentration of silicon oxide from the core to the cladding.
    Type: Grant
    Filed: April 2, 1979
    Date of Patent: November 24, 1981
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: James W. Fleming, Jr., John W. Shiever
  • Patent number: 4175060
    Abstract: A ceramic composition and processing procedure is described which is useful in electric and electronic devices such as thermistors. The ceramic composition, which may be described as a semiconducting barium titanate, exhibits a large positive temperature coefficient of resistance. Advantages are ease and convenience of fabrication with lower sintering temperature than conventional processing and use of an air atmosphere instead of nitrogen or oxygen atmospheres. This facilitates batch processing and permits convenient sintering in a continuous kiln.
    Type: Grant
    Filed: November 25, 1977
    Date of Patent: November 20, 1979
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: James W. Fleming, Jr., Henry M. O'Bryan, Jr., John Thomson, Jr.