Patents by Inventor James W. McCamy

James W. McCamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8551609
    Abstract: A coated article includes a pyrolytic applied transparent electrically conductive oxide film of niobium doped titanium oxide. The article can be made by using a coating mixture having a niobium precursor and a titanium precursor. The coating mixture is directed toward a heated substrate to decompose the coating mixture and to deposit a transparent electrically conductive niobium doped titanium oxide film on the surface of the heated substrate. In one embodiment of the invention, the method is practiced using a vaporized coating mixture including a vaporized niobium precursor; a vaporized titanium precursor, and a carrier gas to deposit a niobium doped titanium oxide film having a sheet resistance greater than 1.2 and an index of refraction of 2.3 or greater. The chemical formula for the niobium doped titanium oxide is Nb:TiOX where X is in the range of 1.8-2.1.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: October 8, 2013
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Songwei Lu, James W. McCamy, James J. Finley
  • Patent number: 8535501
    Abstract: A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: September 17, 2013
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Benjamin Kabagambe, James W. McCamy, Donald W. Boyd
  • Publication number: 20130003206
    Abstract: The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formed from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Benjamin Kabagambe, Michael J. Buchanan, Matthew S. Scott, Brian K. Rearick, Paul A. Medwick, James W. McCamy
  • Patent number: 8277626
    Abstract: The present invention is directed to a method for coating a substrate wherein the substrate is electrically conductive, the method comprising simultaneously applying a plurality of electrically conductive liquid materials to different portions of the substrate wherein at least one of the electrically conductive liquid materials comprises an ionic compound; and applying an electrical current to at least one of the liquid materials thereby depositing the ionic compound onto the substrate.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: October 2, 2012
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Gary Orosz, Donald W. Boyd, Benjamin Kabagambe, James W. McCamy, Douglas A. McPheron
  • Publication number: 20120193233
    Abstract: A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 2, 2012
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Benjamin Kabagambe, James W. McCamy, Donald W. Boyd
  • Publication number: 20120097546
    Abstract: An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.
    Type: Application
    Filed: October 25, 2010
    Publication date: April 26, 2012
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Benjamin Kabagambe, Donald W. Boyd, Michael J. Buchanan, Patrick Kelly, Luke A. Kutilek, James W. McCamy, Douglas A. McPheron, Gary R. Orosz, Raymond D. Limbacher
  • Publication number: 20110305906
    Abstract: The present invention is directed to a method for coating a substrate wherein the substrate is electrically conductive, the method comprising simultaneously applying a plurality of electrically conductive liquid materials to different portions of the substrate wherein at least one of the electrically conductive liquid materials comprises an ionic compound; and applying an electrical current to at least one of the liquid materials thereby depositing the ionic compound onto the substrate.
    Type: Application
    Filed: June 11, 2010
    Publication date: December 15, 2011
    Inventors: Gary Orosz, Donald W. Boyd, Benjamin Kabagambe, James W. McCamy, Douglas A. McPheron
  • Publication number: 20110262757
    Abstract: A coated article includes a pyrolytic applied transparent electrically conductive oxide film of niobium doped titanium oxide. The article can be made by using a coating mixture having a niobium precursor and a titanium precursor. The coating mixture is directed toward a heated substrate to decompose the coating mixture and to deposit a transparent electrically conductive niobium doped titanium oxide film on the surface of the heated substrate. In one embodiment of the invention, the method is practiced using a vaporized coating mixture including a vaporized niobium precursor; a vaporized titanium precursor, and a carrier gas to deposit a niobium doped titanium oxide film having a sheet resistance greater than 1.2 and an index of refraction of 2.3 or greater. The chemical formula for the niobium doped titanium oxide is Nb:TiOX where X is in the range of 1.8-2.1.
    Type: Application
    Filed: April 27, 2010
    Publication date: October 27, 2011
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Songwei Lu, James W. McCamy, James J. Finley
  • Publication number: 20110081486
    Abstract: A coating apparatus includes non-orthogonal coater geometry to improve coatings on a glass ribbon, and to improve yields of such coatings. The apparatus includes a first arrangement to move the ribbon along a first imaginary straight line through a coating zone provided in a glass forming chamber. The coater has a coating nozzle and an exhaust slot, each have a longitudinal axis. The coating nozzle directs coating vapors toward the coating zone, and the exhaust slot removes vapors from the coating zone. A second arrangement mounts the coater in spaced relation to the path with the coating nozzle and the exhaust slot facing the coating zone. A second imaginary straight line is normal to the longitudinal axis of the coating nozzle, and the first imaginary line and the second imaginary line subtend an angle in the range of greater than zero degrees to 90 degrees.
    Type: Application
    Filed: October 2, 2009
    Publication date: April 7, 2011
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: James W. McCamy, John F. Sopko
  • Patent number: 5499599
    Abstract: A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.
    Type: Grant
    Filed: August 11, 1994
    Date of Patent: March 19, 1996
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Douglas H. Lowndes, James W. McCamy
  • Patent number: 5386798
    Abstract: A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.
    Type: Grant
    Filed: October 6, 1993
    Date of Patent: February 7, 1995
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Douglas H. Lowndes, James W. McCamy