Patents by Inventor James W. Peterson

James W. Peterson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230324014
    Abstract: Methods, systems, and devices for inactivating microorganisms are disclosed. An example light emitting device that inactivates microorganisms on a surface comprises a light emitter configured to emit a first light comprising a first wavelength in a range of 380 nanometers (nm) to 420 nm, a first light-converting material configured to convert a first portion of the first light to at least a second light comprising a second wavelength different from the first wavelength, and a second light-converting material configured to convert a second portion of the first light to at least a third light comprising a third wavelength different from the first wavelength, wherein at least the first light, the second light, and the third light mix to form a disinfecting white light.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 12, 2023
    Applicant: Vyv, Inc.
    Inventors: Robert Barron, Jorel Lalicki, James W. Peterson, Nicholas Jones, Cori J. Winslow
  • Patent number: 11713851
    Abstract: Methods, systems, and devices for inactivating microorganisms are disclosed. An example light emitting device that inactivates microorganisms on a surface comprises a light emitter configured to emit a first light comprising a first wavelength in a range of 380 nanometers (nm) to 420 nm, a first light-converting material configured to convert a first portion of the first light to at least a second light comprising a second wavelength different from the first wavelength, and a second light-converting material configured to convert a second portion of the first light to at least a third light comprising a third wavelength different from the first wavelength, wherein at least the first light, the second light, and the third light mix to form a disinfecting white light, wherein the first light makes up at least 10% of the disinfecting white light.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: August 1, 2023
    Assignee: Vyv, Inc.
    Inventors: Robert Barron, Jorel Lalicki, James W. Peterson, Nicholas Jones, Cori J. Winslow
  • Publication number: 20210187138
    Abstract: Methods, systems, and devices for inactivating microorganisms are disclosed. An example light emitting device that inactivates microorganisms on a surface comprises a light emitter configured to emit a first light comprising a first wavelength in a range of 380 nanometers (nm) to 420 nm, a first light-converting material configured to convert a first portion of the first light to at least a second light comprising a second wavelength different from the first wavelength, and a second light-converting material configured to convert a second portion of the first light to at least a third light comprising a third wavelength different from the first wavelength, wherein at least the first light, the second light, and the third light mix to form a disinfecting white light, wherein the first light makes up at least 10% of the disinfecting white light.
    Type: Application
    Filed: February 10, 2021
    Publication date: June 24, 2021
    Inventors: Robert Barron, Jorel Lalicki, James W. Peterson, Nicholas Jones, Cori J. Winslow
  • Patent number: 10918747
    Abstract: Methods, systems, and devices for inactivating microorganisms are disclosed. An example method comprises emitting, with a first light source, a first light comprising a first correlated color temperature (CCT), emitting, with a second light source, a second light comprising a second CCT and, varying respective power levels of the first light source and the second light source such that the first light and the second light combine to form white light comprising an intensity associated with light in a 380-420 nanometer (nm) wavelength range sufficient to initiate inactivation of microorganisms on the surface and a third CCT between the first CCT and the second CCT.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: February 16, 2021
    Assignee: Vital Vio, Inc.
    Inventors: Robert Barron, Jorel Lalicki, James W. Peterson, Nicholas Jones, Cori J. Winslow
  • Patent number: 10753575
    Abstract: Disclosed herein is a device which inactivates microorganisms. The device includes a light emitter and at least one light-converting material arranged to convert at least a portion of light from the light emitter. Any light emitted from the light emitter and converted light emitted from the at least one light-converting material mixes to form a combined light, the combined light having a proportion of spectral energy measured in an approximately 380 nm to approximately 420 nm range of greater than approximately 20 percent. In another embodiment, the device includes a light emitter configured to emit light with wavelengths in a range of 380 to 420 nm, and at least one light-converting material including at least one optical brightener and configured to emit a second light. The first light exiting the device and the second light exiting the device mix to form a combined light, the combined light being white.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: August 25, 2020
    Assignee: Vital Vio, Inc.
    Inventors: Jorel Lalicki, Robert Barron, James W Peterson
  • Publication number: 20190321501
    Abstract: Methods, systems, and devices for inactivating microorganisms are disclosed. An example method comprises emitting, with a first light source, a first light comprising a first correlated color temperature (CCT), emitting, with a second light source, a second light comprising a second CCT and, varying respective power levels of the first light source and the second light source such that the first light and the second light combine to form white light comprising an intensity associated with light in a 380-420 nanometer (nm) wavelength range sufficient to initiate inactivation of microorganisms on the surface and a third CCT between the first CCT and the second CCT.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 24, 2019
    Inventors: Robert Barron, Jorel Lalicki, James W. Peterson, Nicholas Jones, Cori J. Winslow
  • Patent number: 10357582
    Abstract: Disclosed herein is a device which inactivates microorganisms. The device includes a light emitter and at least one light-converting material arranged to convert at least a portion of light from the light emitter. Any light emitted from the light emitter and converted light emitted from the at least one light-converting material mixes to form a combined light, the combined light having a proportion of spectral energy measured in an approximately 380 nm to approximately 420 nm range of greater than approximately 10 percent. In another embodiment, the device includes a light emitter configured to emit light with wavelengths in a range of 380 to 420 nm, and at least one light-converting material including at least one optical brightener and configured to emit a second light. The first light exiting the device and the second light exiting the device mix to form a combined light, the combined light being white.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: July 23, 2019
    Assignee: Vital Vio, Inc.
    Inventors: Robert Barron, Jorel Lalicki, James W Peterson, Nicholas Jones, Cori J. Winslow
  • Publication number: 20180180253
    Abstract: Disclosed herein is a device which inactivates microorganisms. The device includes a light emitter and at least one light-converting material arranged to convert at least a portion of light from the light emitter. Any light emitted from the light emitter and converted light emitted from the at least one light-converting material mixes to form a combined light, the combined light having a proportion of spectral energy measured in an approximately 380 nm to approximately 420 nm range of greater than approximately 20 percent. In another embodiment, the device includes a light emitter configured to emit light with wavelengths in a range of 380 to 420 nm, and at least one light-converting material including at least one optical brightener and configured to emit a second light. The first light exiting the device and the second light exiting the device mix to form a combined light, the combined light being white.
    Type: Application
    Filed: February 1, 2018
    Publication date: June 28, 2018
    Inventors: Jorel Lalicki, Robert Barron, James W. Peterson
  • Patent number: 9927097
    Abstract: Disclosed herein is a device which inactivates microorganisms. The device includes a light emitter and at least one light-converting material arranged to convert at least a portion of light from the light emitter. Any light emitted from the light emitter and converted light emitted from the at least one light-converting material mixes to form a combined light, the combined light having a proportion of spectral energy measured in an approximately 380 nm to approximately 420 nm range of greater than approximately 20 percent. In another embodiment, the device includes a light emitter configured to emit light with wavelengths in a range of 380 to 420 nm, and at least one light-converting material including at least one optical brightener and configured to emit a second light. The first light exiting the device and the second light exiting the device mix to form a combined light, the combined light being white.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: March 27, 2018
    Assignee: Vital Vio Inc.
    Inventors: Jorel Lalicki, Robert Barron, James W Peterson
  • Patent number: 9713223
    Abstract: Disclosed is a method of automatically calibrating a luminaire including at least one light emitting diode (LED) engine, the LED engine including a plurality of LEDs and a controller for driving the at least one LED engine. The method comprises acquiring an image of light emitted from each LED of the LED engine, first determining whether each LED has a predetermined intensity for a color of the LED, first adjusting each LED that does not have the predetermined intensity to have the predetermined intensity for the color of the LED, measuring, by a spectrometer, a color spectrum of a combined light of the LED engine, the color spectrum including a plurality of measured color spectrums, second determining whether a variation exists between each of the plurality of measured color spectrums and a predetermined color spectrum of a control data unit, and second adjusting at least one LED to correct variation.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: July 18, 2017
    Assignee: Vital Vio, Inc.
    Inventors: Robert Barron, Robert Rouhani, Jorel Lalicki, James W. Peterson
  • Publication number: 20170030555
    Abstract: Disclosed herein is a device which inactivates microorganisms. The device includes a light emitter and at least one light-converting material arranged to convert at least a portion of light from the light emitter. Any light emitted from the light emitter and converted light emitted from the at least one light-converting material mixes to form a combined light, the combined light having a proportion of spectral energy measured in an approximately 380 nm to approximately 420 nm range of greater than approximately 20 percent. In another embodiment, the device includes a light emitter configured to emit light with wavelengths in a range of 380 to 420 nm, and at least one light-converting material including at least one optical brightener and configured to emit a second light. The first light exiting the device and the second light exiting the device mix to form a combined light, the combined light being white.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 2, 2017
    Inventors: Jorel Lalicki, Robert Barron, James W. Peterson
  • Publication number: 20170006685
    Abstract: Disclosed is a method of automatically calibrating a luminaire including at least one light emitting diode (LED) engine, the LED engine including a plurality of LEDs and a controller for driving the at least one LED engine. The method comprises acquiring an image of light emitted from each LED of the LED engine, first determining whether each LED has a predetermined intensity for a color of the LED, first adjusting each LED that does not have the predetermined intensity to have the predetermined intensity for the color of the LED, measuring, by a spectrometer, a color spectrum of a combined light of the LED engine, the color spectrum including a plurality of measured color spectrums, second determining whether a variation exists between each of the plurality of measured color spectrums and a predetermined color spectrum of a control data unit, and second adjusting at least one LED to correct variation.
    Type: Application
    Filed: July 1, 2016
    Publication date: January 5, 2017
    Inventors: Robert Barron, Robert Rouhani, Jorel Lalicki, James W. Peterson
  • Patent number: 9439989
    Abstract: Disclosed herein is a light fixture. The light fixture includes at least one first light source that emits at a peak wavelength in a range of approximately 380 nm to approximately 420 nm and at least one second light source that emits at a different peak wavelength, wherein a combined light output of the at least one first light source and the at least one second light source emits a colored light that is perceived as white light. The white light is defined by having a color rendering index (CRI) value of more than approximately 50. The at least one second light source that emits at a different peak wavelength consists of an xy coordinate on a International Commission on Illumination (CIE) 1931 xy color space diagram above a black body curve within a bounded area defined by a first line of approximately y=2.23989x?0.382773 and a second line of approximately y=1.1551x?0.195082.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: September 13, 2016
    Assignee: Vital Vio, Inc.
    Inventors: Jorel Lalicki, James W. Peterson
  • Patent number: 9333274
    Abstract: Disclosed herein is a light fixture. The light fixture includes at least one first light source that emits at a peak wavelength in a range of approximately 380 nm to approximately 420 nm and at least one second light source that emits at a different peak wavelength, wherein a combined light output of the at least one first light source and the at least one second light source emits a colored light that is perceived as white light. The white light is defined by having a color rendering index (CRI) value of more than approximately 50. The at least one second light source that emits at a different peak wavelength consists of an xy coordinate on a International Commission on Illumination (CIE) 1931 xy color space diagram above a black body curve within a bounded area defined by a first line of approximately y=2.23989x?0.382773 and a second line of approximately y=1.1551x?0.195082.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: May 10, 2016
    Assignee: Vital Vio, Inc.
    Inventors: James W. Peterson, Jorel Lalicki
  • Publication number: 20160030610
    Abstract: Disclosed herein is a light fixture. The light fixture includes at least one first light source that emits at a peak wavelength in a range of approximately 380 nm to approximately 420 nm and at least one second light source that emits at a different peak wavelength, wherein a combined light output of the at least one first light source and the at least one second light source emits a colored light that is perceived as white light. The white light is defined by having a color rendering index (CRI) value of more than approximately 50. The at least one second light source that emits at a different peak wavelength consists of an xy coordinate on a International Commission on Illumination (CIE) 1931 xy color space diagram above a black body curve within a bounded area defined by a first line of approximately y=2.23989x?0.382773 and a second line of approximately y=1.1551x?0.195082.
    Type: Application
    Filed: September 30, 2014
    Publication date: February 4, 2016
    Inventors: James W. Peterson, Jorel Lalicki
  • Publication number: 20160030609
    Abstract: Disclosed herein is a light fixture. The light fixture includes at least one first light source that emits at a peak wavelength in a range of approximately 380 nm to approximately 420 nm and at least one second light source that emits at a different peak wavelength, wherein a combined light output of the at least one first light source and the at least one second light source emits a colored light that is perceived as white light. The white light is defined by having a color rendering index (CRI) value of more than approximately 50. The at least one second light source that emits at a different peak wavelength consists of an xy coordinate on a International Commission on Illumination (CIE) 1931 xy color space diagram above a black body curve within a bounded area defined by a first line of approximately y=2.23989x?0.382773 and a second line of approximately y=1.1551x?0.195082.
    Type: Application
    Filed: July 29, 2015
    Publication date: February 4, 2016
    Inventors: James W. Peterson, Jorel Lalicki
  • Patent number: 8005648
    Abstract: A system and method for asset management including tracking refrigerant characteristics is disclosed. The system includes a database including information relating to a refrigerant system and a database including information relating to service technicians. A server is programmed to track a refrigerant characteristic and to provide notifications to a user relating to the refrigerant characteristic.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: August 23, 2011
    Assignee: Verisae, Inc.
    Inventors: Daniel T. Johnson, James W. Peterson, Robert S. McConnell
  • Publication number: 20090126388
    Abstract: A system and method for asset management including tracking refrigerant characteristics is disclosed. The system includes a database including information relating to a refrigerant system and a database including information relating to service technicians. A server is programmed to track a refrigerant characteristic and to provide notifications to a user relating to the refrigerant characteristic.
    Type: Application
    Filed: January 27, 2009
    Publication date: May 21, 2009
    Applicant: VERISAE, INC.
    Inventors: Daniel T. Johnson, James W. Peterson, Robert S. McConnell
  • Publication number: 20090119305
    Abstract: A system and method for managing enterprise assets located at geographically distributed sites. The method includes storing in a database information relating to each asset, wherein the stored information includes cost of each asset and cost of service for each asset. The method further includes tracking and storing information relating to servicing of the assets, including the cost of servicing. Information relating to the assets is then displayed to a user of the system.
    Type: Application
    Filed: January 6, 2009
    Publication date: May 7, 2009
    Applicant: Verisae, Inc.
    Inventors: Daniel T. Johnson, James W. Peterson, Robert S. McConnell
  • Patent number: 7512523
    Abstract: A system and method for asset management including tracking refrigerant characteristics is disclosed. The system includes a database including information relating to a refrigerant system and a database including information relating to service technicians. A server is programmed to track a refrigerant characteristic and to provide notifications to a user relating to the refrigerant characteristic.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: March 31, 2009
    Assignee: Verisae, Inc.
    Inventors: Daniel T. Johnson, James W. Peterson, Robert S. McConnell