Patents by Inventor James W. Wright

James W. Wright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10409252
    Abstract: Situational-awareness controllers and methods to increase situational-awareness for an actor associated with a triggering event are described. An example method includes in response to receiving a notification of a triggering event generated by at least one sensor, a computing device accessing information that includes related to an actor associated with the triggering event. The computing device correlates the information to a compilation of historical information by (i) determining whether the actor's location is associated with one or more safety events stored as part of the compilation of historical information and (ii) determining a risk level of the actor based on whether the one or more associated safety events occurred within a predetermined range of time from the time associated with the triggering event. The computing device generates a command based on a result of the correlating and sends the command to at least one controllable device.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: September 10, 2019
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, James J. Troy, Scott W. Lea, Daniel J. Wright
  • Patent number: 10347109
    Abstract: An automated human personnel fall arresting system including a holonomic base platform, a boom arm movably mounted to and depending from the base platform, at least a portion of the arm being movable in three degrees-of-freedom relative to the base platform, a tether supported by the arm, an operator harness coupled to the tether so as to be dependent from the arm, at least one sensor disposed on the arm and configured to sense movement of the portion of the arm in two degrees-of-freedom of the three degrees-of-freedom, and a controller mounted to the base platform and communicably coupled to the at least one sensor, the controller being configured to automatically control position of the base platform in two orthogonal translational directions and one rotation direction controlled independently from translation, relative to the operator harness, based on signals from the at least one sensor.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: July 9, 2019
    Assignee: The Boeing Company
    Inventors: James J. Troy, Gary E. Georgeson, Scott W. Lea, Daniel J. Wright, Karl E. Nelson
  • Publication number: 20190180513
    Abstract: Examples disclosed herein relate to providing a location-based holographic experience. One example provides a head-mounted display device comprising a see-through display, one or more position sensors, a logic subsystem, and a storage subsystem comprising instructions executable by the logic subsystem to obtain data representing a plurality of holographic objects, acquire sensor data via the one or more position sensors to monitor a position of the head-mounted display device along a path of a holographic experience, detect that the position of the head-mounted display device meets a first position-based condition regarding a first holographic object, and display the first holographic object at a corresponding location for the first holographic object.
    Type: Application
    Filed: February 14, 2019
    Publication date: June 13, 2019
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Jeffrey Kohler, Shawn Crispin Wright, Michael W. McManus, Anthony Ambrus, James Dack, Craig Lee Hoffman, Alexander James Hogan, Korey Krauskopf, Andrew Zibits, Todd Alan Omotani, Jason Bradley Scott
  • Publication number: 20190153539
    Abstract: The present invention provides methods of determining a survival predictor score of a subject having mantle cell lymphoma (MCL). The present invention also provides methods of predicting the survival outcome of a subject having MCL and provides methods of selecting a treatment for a subject having MCL.
    Type: Application
    Filed: April 20, 2017
    Publication date: May 23, 2019
    Applicants: The United States of America, as represented by the secretary, Dep. of Health and Human Service, British Columbia Cancer Agency Branch, Julius-Maximilians - University of W├╝rzburg, Oregon Health and Science University, Hospital Clinic de Barcelona, Universitat de Barcelona, Oslo University Hospital HF, Board of Regents of the University of Nebraska, The Cleveland Clinic Foundation, Mayo Foundation for Medical Education and Research
    Inventors: Louis M. Staudt, David William Scott, George W. Wright, Andreas Rosenwald, Pau Abrisqueta, Rita Braziel, Elias Campo Guerri, Wing C. Chan, Joseph M. Connors, Jan Delabie, Diego Villa, Kai Fu, Randy D. Gascoyne, Timothy Greiner, Elaine S. Jaffe, Pedro Jares, Anja Mottok, German Ott, Lisa M. Rimsza, Graham Slack, Dennis Weisenburger, Erlend B. Smeland, James Robert Cook
  • Patent number: 10297862
    Abstract: An electrochemical cell includes solid-state, printable anode layer, cathode layer and non-aqueous gel electrolyte layer coupled to the anode layer and cathode layer. The electrolyte layer provides physical separation between the anode layer and the cathode layer, and comprises a composition configured to provide ionic communication between the anode layer and cathode layer by facilitating transmission of multivalent ions between the anode layer and the cathode layer.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: May 21, 2019
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, IMPRINT ENERGY, INC.
    Inventors: Paul K. Wright, James W. Evans, Christine Ho
  • Patent number: 10286556
    Abstract: A method and apparatus for performing an operation on a workpiece using a multi-axis compliant end-effector for attachment to a robotic device. The end-effector is positioned at a nominal location of a workpiece feature on which the operation is to be performed. The end-effector is passively aligned with the workpiece feature by contacting the end-effector with the workpiece feature. The operation is performed on the workpiece feature in response to aligning the end effector with the workpiece feature.
    Type: Grant
    Filed: October 16, 2016
    Date of Patent: May 14, 2019
    Assignee: The Boeing Company
    Inventors: James J. Troy, Daniel J. Wright, Scott W. Lea
  • Publication number: 20180185110
    Abstract: A multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures includes first and second master input devices, a first slave robotic mechanism, and at least one processor configured to generate a first slave command for the first slave robotic mechanism by switchably using one or both of a first command indicative of manipulation of the first master input device by a first user and a second command indicative of manipulation of the second master input device by a second user. To facilitate the collaboration or training, both first and second users communicate with each other through an audio system and see the minimally invasive surgery site on first and second displays respectively viewable by the first and second users.
    Type: Application
    Filed: January 10, 2018
    Publication date: July 5, 2018
    Inventors: Rajesh Kumar, Brian D. Hoffman, Giuseppe Maria Prisco, David Q. Larkin, William C. Nowlin, Frederic H. Moll, Stephen J. Blumenkranz, Gunter D. Niemeyer, J. Kenneth Salisbury, JR., Yulun Wang, Modjtaba Ghodoussi, Darrin R. Uecker, James W. Wright, Amante A. Mangaser, Ranjan Mukherjee
  • Patent number: 9867671
    Abstract: A multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures includes first and second master input devices, a first slave robotic mechanism, and at least one processor configured to generate a first slave command for the first slave robotic mechanism by switchably using one or both of a first command indicative of manipulation of the first master input device by a first user and a second command indicative of manipulation of the second master input device by a second user. To facilitate the collaboration or training, both first and second users communicate with each other through an audio system and see the minimally invasive surgery site on first and second displays respectively viewable by the first and second users.
    Type: Grant
    Filed: May 29, 2017
    Date of Patent: January 16, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Rajesh Kumar, Brian D. Hoffman, Giuseppe Maria Prisco, David Q. Larkin, William C. Nowlin, Frederic H. Moll, Stephen J. Blumenkranz, Gunter D. Niemeyer, J. Kenneth Salisbury, Jr., Yulun Wang, Modjtaba Ghodoussi, Darrin R. Uecker, James W. Wright, Amante A. Mangaser, Ranjan Mukherjee
  • Patent number: 9786203
    Abstract: A medical system that allows a mentor to teach a pupil how to use a robotically controlled medical instrument. The system may include a first handle that can be controlled by a mentor to move the medical instrument. The system may further have a second handle that can be moved by a pupil to control the same instrument. Deviations between movement of the handles by the mentor and the pupil can be provided as force feedback to the pupil and mentor handles. The force feedback pushes the pupil's hand to correspond with the mentor's handle movement. The force feedback will also push the mentor's hand to provide information to the mentor on pupil's movements. The mentor is thus able to guide the pupil's hands through force feedback of the pupil handles to teach the pupil how to use the system.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: October 10, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Yulun Wang, Modjtaba Ghodoussi, Darrin R. Uecker, James W. Wright, Amante A. Mangaser, Ranjan Mukherjee
  • Publication number: 20170258537
    Abstract: A multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures includes first and second master input devices, a first slave robotic mechanism, and at least one processor configured to generate a first slave command for the first slave robotic mechanism by switchably using one or both of a first command indicative of manipulation of the first master input device by a first user and a second command indicative of manipulation of the second master input device by a second user. To facilitate the collaboration or training, both first and second users communicate with each other through an audio system and see the minimally invasive surgery site on first and second displays respectively viewable by the first and second users.
    Type: Application
    Filed: May 29, 2017
    Publication date: September 14, 2017
    Inventors: Rajesh Kumar, Brian D. Hoffman, Giuseppe Maria Prisco, David Q. Larkin, William C. Nowlin, Frederic H. Moll, Stephen J. Blumenkranz, Gunter D. Niemeyer, J. Kenneth Salisbury, JR., Yulun Wang, Modjtaba Ghodoussi, Darrin R. Uecker, James W. Wright, Amante A. Mangaser, Ranjan Mukherjee
  • Patent number: 9666101
    Abstract: A multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures includes first and second master input devices, a first slave robotic mechanism, and at least one processor configured to generate a first slave command for the first slave robotic mechanism by switchably using one or both of a first command indicative of manipulation of the first master input device by a first user and a second command indicative of manipulation of the second master input device by a second user. To facilitate the collaboration or training, both first and second users communicate with each other through an audio system and see the minimally invasive surgery site on first and second displays respectively viewable by the first and second users.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: May 30, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Rajesh Kumar, Brian David Hoffman, Giuseppe Maria Prisco, David Q. Larkin, William C. Nowlin, Frederic H. Moll, Stephen J. Blumenkranz, Gunter D. Niemeyer, J. Kenneth Salisbury, Jr., Yulun Wang, Modjtaba Ghodoussi, Darrin R. Uecker, James W. Wright, Amante A. Mangaser, Ranjan Mauherjee
  • Patent number: 9636186
    Abstract: A multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures includes first and second master input devices, a first slave robotic mechanism, and at least one processor configured to generate a first slave command for the first slave robotic mechanism by switchably using one or both of a first command indicative of manipulation of the first master input device by a first user and a second command indicative of manipulation of the second master input device by a second user. To facilitate the collaboration or training, both first and second users communicate with each other through an audio system and see the minimally invasive surgery site on first and second displays respectively viewable by the first and second users.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: May 2, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Rajesh Kumar, Brian David Hoffman, Giuseppe Maria Prisco, David Q. Larkin, William C. Nowlin, Frederic H. Moll, Stephen J. Blumenkranz, Gunter D. Niemeyer, J. Kenneth Salisbury, Jr., Yulun Wang, Modjtaba Ghodoussi, Darrin R. Uecker, James W. Wright, Amante A. Mangaser, Ranjan Mauherjee
  • Publication number: 20160166345
    Abstract: A multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures includes first and second master input devices, a first slave robotic mechanism, and at least one processor configured to generate a first slave command for the first slave robotic mechanism by switchably using one or both of a first command indicative of manipulation of the first master input device by a first user and a second command indicative of manipulation of the second master input device by a second user. To facilitate the collaboration or training, both first and second users communicate with each other through an audio system and see the minimally invasive surgery site on first and second displays respectively viewable by the first and second users.
    Type: Application
    Filed: January 26, 2016
    Publication date: June 16, 2016
    Inventors: RAJESH KUMAR, BRIAN DAVID HOFFMAN, GIUSEPPE MARIA PRISCO, DAVID Q. LARKIN, WILLIAM C. NOWLIN, FREDERIC H. MOLL, STEPHEN J. BLUMENKRANZ, GUNTER D. NIEMEYER, J. KENNETH SALISBURY, JR., YULUN WANG, MODJTABA GHODOUSSI, DARRIN R. UECKER, JAMES W. WRIGHT, AMANTE A. MANGASER, RANJAN MAUHERJEE
  • Publication number: 20160140875
    Abstract: A multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures includes first and second master input devices, a first slave robotic mechanism, and at least one processor configured to generate a first slave command for the first slave robotic mechanism by switchably using one or both of a first command indicative of manipulation of the first master input device by a first user and a second command indicative of manipulation of the second master input device by a second user. To facilitate the collaboration or training, both first and second users communicate with each other through an audio system and see the minimally invasive surgery site on first and second displays respectively viewable by the first and second users.
    Type: Application
    Filed: January 26, 2016
    Publication date: May 19, 2016
    Inventors: Rajesh Kumar, Brian David Hoffman, Giuseppe Maria Prisco, David Q. Larkin, William C. Nowlin, Frederic H. Moll, Stephen J. Blumenkranz, Gunter D. Niemeyer, J. Kenneth Salisbury, JR., Yulun Wang, Modjtaba Ghodoussi, Darrin R. Uecker, James W. Wright, Amante A. Mangaser, Ranjan Mauherjee
  • Patent number: 9271798
    Abstract: A multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures includes first and second master input devices, a first slave robotic mechanism, and at least one processor configured to generate a first slave command for the first slave robotic mechanism by switchably using one or both of a first command indicative of manipulation of the first master input device by a first user and a second command indicative of manipulation of the second master input device by a second user. To facilitate the collaboration or training, both first and second users communicate with each other through an audio system and see the minimally invasive surgery site on first and second displays respectively viewable by the first and second users.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: March 1, 2016
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Rajesh Kumar, Brian David Hoffman, Giuseppe Maria Prisco, David Q. Larkin, William C. Nowlin, Frederic H. Moll, Stephen J. Blumenkranz, Gunter D. Niemeyer, J. Kenneth Salisbury, Jr., Yulun Wang, Modjtaba Ghodoussi, Darrin R. Uecker, James W. Wright, Amante A. Mangaser, Ranjan Mauherjee
  • Publication number: 20150248847
    Abstract: A medical system that allows a mentor to teach a pupil how to use a robotically controlled medical instrument. The system may include a first handle that can be controlled by a mentor to move the medical instrument. The system may further have a second handle that can be moved by a pupil to control the same instrument. Deviations between movement of the handles by the mentor and the pupil can be provided as force feedback to the pupil and mentor handles. The force feedback pushes the pupil's hand to correspond with the mentor's handle movement. The force feedback will also push the mentor's hand to provide information to the mentor on pupil's movements. The mentor is thus able to guide the pupil's hands through force feedback of the pupil handles to teach the pupil how to use the system.
    Type: Application
    Filed: April 22, 2015
    Publication date: September 3, 2015
    Inventors: Yulun Wang, Modjtaba Ghodoussi, Darrin R. Uecker, James W. Wright, Amante A. Mangaser, Ranjan Mukherjee
  • Publication number: 20140174308
    Abstract: A liner is inserted into the well of a silkscreen printing frame, enabling the printing process to be carried out considerably faster and more efficiently. The liner bridges the interface between the interior periphery of the frame and a screen stencil stretched across the bottom of the frame. The liner includes generally vertical sidewalls disposed adjacent the inner periphery of the frame and an integral inwardly depending base that overlaps the margins of the screen stencil. An adhesive coating on the bottom surface of the liner base securely adheres the liner base to an emulsion layer covering the margins of the screen stencil. The base of the liner is otherwise open so that ink deposited in the well contacts the non-marginal region of the screen stencil, while the liner isolates the ink from the interface between the screen stencil and the inner periphery of the frame.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 26, 2014
    Inventors: John C. Wright, James W. Wright
  • Publication number: 20130331859
    Abstract: A multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures includes first and second master input devices, a first slave robotic mechanism, and at least one processor configured to generate a first slave command for the first slave robotic mechanism by switchably using one or both of a first command indicative of manipulation of the first master input device by a first user and a second command indicative of manipulation of the second master input device by a second user. To facilitate the collaboration or training, both first and second users communicate with each other through an audio system and see the minimally invasive surgery site on first and second displays respectively viewable by the first and second users.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 12, 2013
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Rajesh Kumar, Brian David Hoffman, Giuseppe Maria Prisco, David Q. Larkin, William C. Nowlin, Frederic H. Moll, Stephen J. Blumenkranz, Gunter D. Niemeyer, J. Kenneth Salisbury, JR., Yulun Wang, Modjtaba Ghodoussi, Darrin R. Uecker, James W. Wright, Amante A. Mangaser, Ranjan Mauherjee
  • Publication number: 20110087238
    Abstract: A system for performing minimally invasive cardiac procedures. The system includes a pair of surgical instruments that are coupled to a pair of robotic arms. The instruments have end effectors that can be manipulated to hold and suture tissue. The robotic arms are coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the end effectors. The movement of the handles is scaled so that the end effectors have a corresponding movement that is different, typically smaller, than the movement performed by the hands of the surgeon. The scale factor is adjustable so that the surgeon can control the resolution of the end effector movement. The movement of the end effector can be controlled by an input button, so that the end effector only moves when the button is depressed by the surgeon.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 14, 2011
    Applicant: Intuitive Surgical Operations, INC.
    Inventors: YULUN WANG, Darrin R. Uecker, Charles S. Jordan, James W. Wright, Keith Phillip Laby, Jeff D. Wilson, Modjtaba Ghoudoussi
  • Patent number: 7914521
    Abstract: A minimally invasive surgical system includes a pair of surgical instruments having end effectors to hold and suture tissue, a pair of robotic arms coupled to the surgical instruments, a controller, and a pair of master handles coupled through the controller to the robotic arms, so that surgeon manipulation of the handles produces corresponding movement of the end effectors in an adjustably scaled fashion. An input button allows the surgeon to adjust the position of the handles without moving the end effectors, so that the handles may be moved to a more comfortable position. An optionally included robotically controlled endoscope allows the surgeon to remotely view the surgical site. Using the system, a cardiac procedure can be performed by making small incisions in the patient's skin, inserting the instruments and endoscope through the incisions, and manipulating the handles to move the end effectors to perform the cardiac procedure.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: March 29, 2011
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Yulun Wang, Darrin R Uecker, Charles S Jordan, James W Wright, Jeffrey D Wilson, Modijaba Ghoudoussi, Keith Phillip Laby