Patents by Inventor James Weimer
James Weimer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7449075Abstract: A titanium-alloy article is produced by providing a workpiece of an alpha-beta titanium alloy having a beta-transus temperature, and thereafter mechanically working the workpiece at a mechanical-working temperature above the beta-transus temperature. The mechanically worked workpiece is solution heat treated at a solution-heat-treatment temperature of from about 175° F. below the beta-transus temperature to about 25° F. below the beta-transus temperature, quenched, overage heat treated at an overage-heat-treatment temperature of from about 400° F. below the beta-transus temperature to about 275° F. below the beta-transus temperature, and cooled from the overage-heat-treatment temperature.Type: GrantFiled: June 28, 2004Date of Patent: November 11, 2008Assignee: General Electric CompanyInventors: Andrew Philip Woodfield, Wesley Douglas Pridemore, Bernard Harold Lawless, Nancy Ann Sullivan, Peter Wayte, Michael James Weimer, Thomas Froats Broderick
-
Publication number: 20080156453Abstract: Articles for use with highly reactive alloys that include a graphite crucible having an interior, and at least a first protective layer applied to the interior of the graphite crucible in which the graphite crucible having the first protective layer is used for melting highly reactive alloys.Type: ApplicationFiled: December 27, 2006Publication date: July 3, 2008Inventors: Thomas Joseph Kelly, Michael James Weimer, Bernard Patrick Bewlay, Michael Francis Xavier Gigliotti
-
Publication number: 20080156147Abstract: Methods for reducing carbon contamination when melting highly reactive alloys involving providing a graphite crucible having an interior, applying at least a first protective layer to the interior of the graphite crucible, placing a highly reactive alloy into the crucible having the first protective layer, and melting the highly reactive alloy to obtain a melted alloy having reduced carbon contamination.Type: ApplicationFiled: December 27, 2006Publication date: July 3, 2008Inventors: Thomas Joseph Kelly, Michael James Weimer, Bernard Patrick Bewlay, Michael Francis Xavier Gigliotti
-
Patent number: 7364801Abstract: An environmental coating suitable for use on turbine components, such as turbine disks and turbine seal elements, formed of alloys susceptible to oxidation and hot corrosion. The environmental coating is predominantly a solid solution phase of nickel, iron, and/or cobalt. The coating contains about 18 weight percent to about 60 weight percent chromium, which ensures the formation of a protective chromia (Cr2O3) scale while also exhibiting high ductility. The coating may further contain up to about 8 weight percent aluminum, as well as other optional additives. The environmental coating is preferably sufficiently thin and ductile to enable compressive stresses to be induced in the underlying substrate through shot peening without cracking the coating.Type: GrantFiled: December 6, 2006Date of Patent: April 29, 2008Assignee: General Electric CompanyInventors: Brian Thomas Hazel, Michael James Weimer
-
Publication number: 20080080978Abstract: Methods for coating a turbine engine rotor component involving depositing at least one platinum group metal selected from platinum, palladium, rhodium, ruthenium, iridium and osmium on the rotor component, and heating the rotor component to a temperature of from about 500° C. to about 800° C.Type: ApplicationFiled: October 3, 2006Publication date: April 3, 2008Inventors: Robert George Zimmerman, John Frederick Ackerman, Joseph Aloysius Heaney, Bangalore Aswatha Nagaraj, Michael James Weimer
-
Patent number: 7314674Abstract: A composition comprising a particulate corrosion resistant component, and a glass-forming binder component. The particulate corrosion resistant component comprises from 0 to about 95% alumina particulates, and from about 5 to 100% corrosion resistant non-alumina particulates having a CTE greater than that of the alumina particulates. Also disclosed is an article comprising a turbine component comprising a metal substrate and a corrosion resistant coating having thickness up to about 10 mils (254 microns) overlaying the metal substrate. At least the layer of this coating adjacent to the metal substrate comprises a glass-forming binder component and the particulate corrosion resistant component adhered to the glass-forming binder component.Type: GrantFiled: December 15, 2004Date of Patent: January 1, 2008Assignee: General Electric CompanyInventors: Brian Thomas Hazel, Michael James Weimer
-
Publication number: 20070141371Abstract: A composition comprising a glass-forming binder component and a particulate corrosion resistant component. The particulate corrosion resistant component comprises corrosion resistant particulates having: a CTEp of at least about 4 and being solid at a temperature of about 1300° F. (704° C.) or greater; and a maximum median particle size defined by one of the following formulas: (a) for a CTEp of 8 or less, an Mp equal to or less than (4.375×CTEp)?10; and (b) for a CTEp of greater than 8, an Mp equal to or less than (?4.375×CTEp)+60, wherein CTEp is the average CTE of the corrosion resistant particulates and wherein Mp is the median equivalent spherical diameter (ESD), in microns, of the corrosion resistant particulates. Also disclosed is an article comprising a turbine component comprising a metal substrate and a corrosion resistant coating overlaying the metal substrate, as well as a method for forming at least one layer of the corrosion resistant coating adjacent to the metal substrate.Type: ApplicationFiled: December 20, 2005Publication date: June 21, 2007Inventors: Brian Thomas Hazel, Michael James Weimer
-
Patent number: 6926928Abstract: A gas turbine component, such as a turbine disk or a turbine seal element, is protected by depositing an oxide coating on the gas turbine component. The deposition is performed by a vapor deposition process such as metal-organic chemical vapor deposition (MOCVD) to a coating thickness of from about 0.2 to about 50 micrometers, preferably from about 0.5 to about 3 micrometers. The deposited oxide may be an oxide of aluminum, silicon, tantalum, titanium, and chromium.Type: GrantFiled: July 19, 2002Date of Patent: August 9, 2005Assignee: General Electric CompanyInventors: John Frederick Ackerman, Joseph Aloysius Heaney, Bangalore Aswatha Nagaraj, James Andrew Hahn, Michael James Weimer, Jon Conrad Schaeffer, William Scott Walston
-
Patent number: 6921251Abstract: A turbine engine rotor component, such as a compressor or turbine disk or seal element, is protected from corrosion by depositing an aluminum or chromium coating on the component. The deposition can be performed by a vapor deposition process, such as metal organic chemical vapor deposition (MOCVD), to a coating thickness of from about 0.2 to about 50 microns, typically from about 0.5 to about 3 microns. In one embodiment, the method is conducted in a vapor coating container having a hollow interior coating chamber, and includes the steps of loading the coating chamber with the component to be coated; and flowing a tri-alkyl aluminum or chromium carbonyl coating gas into the loaded coating chamber at a specified temperature, pressure, and time to deposit an aluminum or chromium coating on the surface of the component. The coated component is then heated in a nonoxidizing atmosphere to a specified temperature to form an aluminide or chromide coating on the surface.Type: GrantFiled: September 5, 2003Date of Patent: July 26, 2005Assignee: General Electric CompanyInventors: John Frederick Ackerman, Michael James Weimer, Joseph Aloysius Heaney, Robert George Zimmerman, Jr., Bangalore Aswatha Nagaraj, Brian Thomas Hazel, Nripendra Nath Das
-
Patent number: 6905730Abstract: A method for forming an aluminide coating on a turbine engine component having an external surface and an internal cavity defined by an internal surface that is connected to the external surface by at least one hole. The method is conducted in a vapor coating container having a hollow interior coating chamber, and includes the steps of loading the coating chamber with the component to be coated; flowing a tri-alkyl aluminum coating gas into the loaded coating chamber at a specified temperature, pressure, and time to deposit an aluminum coating on the external and internal surfaces of the component; and heating the component in a nonoxidizing atmosphere at a specified temperature and time to form an aluminide coating on the external and internal surfaces. The coated component is typically then maintained at an elevated temperature in the presence of oxygen to form an oxide coating on the external and internal surfaces of the component.Type: GrantFiled: July 8, 2003Date of Patent: June 14, 2005Assignee: General Electric CompanyInventors: John Frederick Ackerman, Michael James Weimer, Joseph Aloysius Heaney, William Scott Walston, Bangalore Aswatha Nagaraj
-
Patent number: 6901648Abstract: A welding filler metal is manufactured by casting a nickel-base alloy as an extrusion rod having a diameter of from about 0.2 inch to about 0.5 inch. The extrusion rod has at least about 12 grains in the cross section of the extrusion rod. The extrusion rod is extruded in a single extrusion operation to a filler-metal diameter of less than about 0.1 inch and using an areal extrusion ratio of at least about 9:1 to form the welding filler metal. Preferably, the process is used to make a nickel-base superalloy welding filler metal of a diameter of about 0.05-0.06 inch from an extrusion-rod casting of about ¼ inch diameter and having at least about 12 grains in the cross section.Type: GrantFiled: August 31, 2001Date of Patent: June 7, 2005Assignee: General Electric CompanyInventors: Thomas Joseph Kelly, Michael James Weimer
-
Patent number: 6869508Abstract: A PVD process and apparatus (120) for depositing a coating (132) from multiple sources (110, 111) of different materials. The process and apparatus (120) are particulaity intended to deposit a beta-nickel aluminide coating (132) containing one or more elements whose vapor pressures are lower than NiAl. The PVD process and apparatus (120) entail feeding at least two materials (110, 111) into a coating chamber (122) and evaporating the materials (110, 111) at different rates from separate molten pools (114, 115) thereof. Articles (130) to be coated are suspended within the coating chamber (122), and transported with a support apparatus (118) relative to the two molten pools (114, 115) so as to deposit a coating (132) with a controlled composition that is a mixture of the first and second materials (110, 111).Type: GrantFiled: May 15, 2002Date of Patent: March 22, 2005Assignee: General Electric CompanyInventors: Ramgopal Darolia, Reed Roeder Corderman, Joseph David Rigney, Richard Arthur Nardi, Jr., Michael James Weimer
-
Patent number: 6800376Abstract: A method is provided for refurbishing a service operated metallic coating on a substrate alloy, the coating including at least within a coating outer surface at least one oxide chemically grown from at least one coating element, for example Al, and chemically bonded with the coating outer surface as a result of thermal exposure during service operation. Growth of the oxide has depleted at least a portion of the coating element from the coating. The method comprises removing the oxide from the coating outer surface while substantially retaining the metallic coating, thereby exposing in the coating outer surface at least one surface void that had been occupied by the oxide. The retained metallic coating is mechanically worked, substantially without removal of the retained coating, to close the void, providing a treated metallic coating surface over which a refurbishing coating is applied.Type: GrantFiled: September 30, 2002Date of Patent: October 5, 2004Assignee: General Electric CompanyInventors: Bhupendra Kumar Gupta, Nripendra Nath Das, Lyle Timothy Rasch, Jeffrey Allen Conner, Michael James Weimer
-
Patent number: 6755924Abstract: A heat treatment process that will restore the mechanical properties of an aircraft engine article that includes a cast nickel-based superalloy portion welded to a wrought portion. The heat treatment process includes placing an article that includes the nickel-based superalloy cast portion into a heat treatment chamber, evacuating the chamber to a suitable atmosphere, heating the chamber in a manner that minimizes distortion of the cast portion to a temperature in the range of 1950° F. to 2050° F., holding the temperature in that range for a period of time sufficient to solution all the delta phase precipitates, and then cooling the article to room temperature in a manner that minimizes distortion of the article. After solution heat treatment, the wrought portion of the engine part can be removed and replaced and the engine article can be reprocessed.Type: GrantFiled: December 20, 2001Date of Patent: June 29, 2004Assignee: General Electric CompanyInventors: William Henry Harrison, Thomas Joseph Kelly, Michael James Weimer
-
Publication number: 20040115462Abstract: A coated article has a metallic substrate with a substrate composition, and a metallic coating overlying and contacting the metallic substrate. The metallic coating has a metallic-coating composition different from the substrate composition. A protective coating overlies and contacts the metallic coating. The protective coating includes an aluminide layer overlying and contacting the metallic coating, and optionally a thermal barrier coating overlying and contacting the aluminide layer. This structure may be used to restore a key dimension of an article that has previously been in service and to protect the article as well.Type: ApplicationFiled: December 13, 2002Publication date: June 17, 2004Inventors: Wayne Ray Grady, Thomas Joseph Kelly, Michael James Weimer, Nripendra Nath Das, Mark Alan Rosenzweig
-
Publication number: 20040013802Abstract: A gas turbine component, such as a turbine disk or a turbine seal element, is protected by depositing an oxide coating on the gas turbine component. The deposition is performed by a vapor deposition process such as metal-organic chemical vapor deposition (MOCVD) to a coating thickness of from about 0.2 to about 50 micrometers, preferably from about 0.5 to about 3 micrometers. The deposited oxide may be an oxide of aluminum, silicon, tantalum, titanium, and chromium.Type: ApplicationFiled: July 19, 2002Publication date: January 22, 2004Inventors: John Frederick Ackerman, Joseph Aloysius Heaney, Bangalore Aswatha Nagaraj, James Andrew Hahn, Michael James Weimer, Jon Conrad Schaeffer, William Scott Walston
-
Patent number: 6676992Abstract: A method for coating an article includes preparing a coating precursor paint including aluminum-containing pigment particles, a temporary organic binder comprising an acrylic, and a solvent for the temporary organic binder. The coating precursor paint is applied to a surface of the article and thereafter heated to a temperature of from about 1200° F. to about 2100° F. in a non-oxidizing environment.Type: GrantFiled: August 22, 2001Date of Patent: January 13, 2004Assignee: General Electric CompanyInventors: Jeffrey Allan Pfaendtner, Michael James Weimer, William Evan McCormack, Joseph David Rigney, Mark Lloyd Miller, John Lewis Lackman
-
Patent number: 6616978Abstract: A substrate is protected by a multilayer protective coating having an oxide layer, and a phosphate/organic binder layer initially overlying the oxide layer. The multilayer protective coating is cured by first degassing the multilayer protective coating in a pre-cure degassing temperature range of from about 250° F. to about 500° F. for a time of at least about 30 minutes. The multilayer protective coating is thereafter heated to a curing temperature range of from about 1200° F. to about 1400° F. for a time of at least about 30 minutes.Type: GrantFiled: May 9, 2002Date of Patent: September 9, 2003Assignee: General Electric CompanyInventors: Michael James Weimer, Joseph Aloysius Heaney, Bangalore Aswatha Nagaraj, James Andrew Hahn
-
Publication number: 20030157363Abstract: A method for forming a thermal barrier coating system on an article subjected to a hostile thermal environment, such as the hot gas path components of a gas turbine engine. The coating system is generally comprised of a ceramic layer and an environmentally resistant beta phase nickel aluminum intermetallic (&bgr;-NiAl) bond coat that adheres the ceramic layer to the component surface. A thin aluminum oxide scale forms on the surface of the &bgr;-NiAl during heat treatment. An additional layer of diffusion aluminide may can be formed underlying the ceramic layer. The &bgr;-NiAl may contain alloying elements in addition to nickel and aluminum in order to increase the environmental resistance of the &bgr;-NiAl. These elements include hafnium, chromium and zirconium and increase the oxidation resistance of the &bgr;-NiAl. The &bgr;-NiAl is supplied as a powder having a size in the range of 20-80 microns.Type: ApplicationFiled: April 26, 2001Publication date: August 21, 2003Inventors: Joseph David Rigney, Michael James Weimer, Bangalore Aswatha Nagaraj, Yuk-Chiu Lau
-
Patent number: 6607789Abstract: A method for forming a thermal barrier coating system on an article subjected to a hostile thermal environment, such as the hot gas path components of a gas turbine engine. The coating system is generally comprised of a ceramic layer and an environmentally resistant beta phase nickel aluminum intermetallic (&bgr;-NiAl) bond coat that adheres the ceramic layer to the component surface. A thin aluminum oxide scale forms on the surface of the &bgr;-NiAl during heat treatment. The &bgr;-NiAl may contain alloying elements in addition to nickel and aluminum in order to increase the environmental resistance of the &bgr;-NiAl. The &bgr;-NiAl powder having a size in the range of 20-50 microns is applied using air plasma spray techniques to produce a surface having a roughness of 400 microinches or rougher. The ceramic top coat can be applied using inexpensive thermal spray techniques to greater thicknesses than achievable otherwise because of the rough surface finish of the underlying &bgr;-NiAl bond coat.Type: GrantFiled: April 26, 2001Date of Patent: August 19, 2003Assignee: General Electric CompanyInventors: Joseph David Rigney, Michael James Weimer, Bangalore Aswatha Nagaraj, Yuk-Chiu Lau