Patents by Inventor James Wesley McCoy

James Wesley McCoy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11595109
    Abstract: A user equipment device (UE) determines a beam coherence interval metric, which is a measure of stability of a beam pair over time based on a set of beam coherence intervals measured by the UE. The beam pair comprises a receive beam of the UE and a transmit beam of a base station transmitting to the UE. A beam coherence interval comprises a time duration within which a quality of a signal received on the UE receive beam remains within one of a plurality of signal quality bins. The UE also determines a hysteresis value based on the beam coherence interval metric and uses the hysteresis value to decide to switch from an active receive beam to a different receive beam that has a signal quality higher than the active receive beam by at least the hysteresis value. Alternatively, the base station determines and sends the UE the hysteresis value.
    Type: Grant
    Filed: May 10, 2022
    Date of Patent: February 28, 2023
    Assignee: National Instruments Corporation
    Inventors: Nikhil U. Kundargi, Venkata Siva Santosh Ganji, Ahsan Aziz, James Wesley McCoy
  • Publication number: 20220376764
    Abstract: A user equipment device (UE) determines a beam coherence interval metric, which is a measure of stability of a beam pair over time based on a set of beam coherence intervals measured by the UE. The beam pair comprises a receive beam of the UE and a transmit beam of a base station transmitting to the UE. A beam coherence interval comprises a time duration within which a quality of a signal received on the UE receive beam remains within one of a plurality of signal quality bins. The UE also determines a hysteresis value based on the beam coherence interval metric and uses the hysteresis value to decide to switch from an active receive beam to a different receive beam that has a signal quality higher than the active receive beam by at least the hysteresis value. Alternatively, the base station determines and sends the UE the hysteresis value.
    Type: Application
    Filed: May 10, 2022
    Publication date: November 24, 2022
    Inventors: Nikhil U. Kundargi, Venkata Siva Santosh Ganji, Ahsan Aziz, James Wesley McCoy
  • Patent number: 11381297
    Abstract: A UE determines a beam coherence interval metric that is a measure of stability of a beam pair over time based on a set of beam coherence intervals measured by the UE. The beam pair comprises a UE receive beam and a base station transmit beam. A beam coherence interval comprises a time duration within which a quality of a signal received on the UE receive beam remains within one of a plurality of signal quality bins. The UE reports the metric to the base station. The base station may update beam management resource and reporting configurations to the UE based on the metric. The UE may also use the metric to determine a hysteresis value useable by the UE to decide to switch from an active receive beam to a different receive beam having a higher signal quality by at least the hysteresis value.
    Type: Grant
    Filed: October 12, 2019
    Date of Patent: July 5, 2022
    Assignee: National Instruments Corporation
    Inventors: Nikhil U. Kundargi, Venkata Siva Santosh Ganji, Ahsan Aziz, James Wesley McCoy
  • Patent number: 11178628
    Abstract: A user equipment device (UE) reduces receive beam selection time. An antenna array forms receive beams to receive synchronization signal blocks (SSBs) transmitted by a base station (BS). Each SSB comprises OFDM symbols. Each SSB includes a BS-assigned index. The receive beams are switched in time such that, for each SSB, two or more of the receive beams are used to receive corresponding two or more mutually exclusive sets each having at least one but less than all of the OFDM symbols of the SSB. A processor is programmed to, for each receive beam/SSB index pair, measure a signal quality based on the at least one but less than all of the OFDM symbols of the indexed SSB received by the receive beam of the pair. The processor uses the measured signal qualities to select one of the receive beams to use to receive subsequent communications from the BS.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: November 16, 2021
    Assignee: National Instruments Corporation
    Inventors: Nikhil U. Kundargi, Venkata Siva Santosh Ganji, Ahsan Aziz, James Wesley McCoy
  • Publication number: 20210136703
    Abstract: A user equipment device (UE) reduces receive beam selection time. An antenna array forms receive beams to receive synchronization signal blocks (SSBs) transmitted by a base station (BS). Each SSB comprises OFDM symbols. Each SSB includes a BS-assigned index. The receive beams are switched in time such that, for each SSB, two or more of the receive beams are used to receive corresponding two or more mutually exclusive sets each having at least one but less than all of the OFDM symbols of the SSB. A processor is programmed to, for each receive beam/SSB index pair, measure a signal quality based on the at least one but less than all of the OFDM symbols of the indexed SSB received by the receive beam of the pair. The processor uses the measured signal qualities to select one of the receive beams to use to receive subsequent communications from the BS.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Inventors: Nikhil U. Kundargi, Venkata Siva Santosh Ganji, Ahsan Aziz, James Wesley McCoy
  • Publication number: 20210111779
    Abstract: A UE determines a beam coherence interval metric that is a measure of stability of a beam pair over time based on a set of beam coherence intervals measured by the UE. The beam pair comprises a UE receive beam and a base station transmit beam. A beam coherence interval comprises a time duration within which a quality of a signal received on the UE receive beam remains within one of a plurality of signal quality bins. The UE reports the metric to the base station. The base station may update beam management resource and reporting configurations to the UE based on the metric. The UE may also use the metric to determine a hysteresis value useable by the UE to decide to switch from an active receive beam to a different receive beam having a higher signal quality by at least the hysteresis value.
    Type: Application
    Filed: October 12, 2019
    Publication date: April 15, 2021
    Inventors: Nikhil U. Kundargi, Venkata Siva Santosh Ganji, Ahsan Aziz, James Wesley McCoy
  • Patent number: 10951300
    Abstract: A base station (BS)/user equipment (UE) for performing radio frequency beam management and recovery in communication with a UE/BS. The BS/UE includes a processor and a memory that stores first and second thresholds. The processor evaluates a beam quality metric against the first and second thresholds, performs beam switching and/or beam broadening in response to determining the beam quality metric falls below the first threshold, and performs a beam failure recovery procedure in response to determining the beam quality metric falls below the second threshold.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: March 16, 2021
    Assignee: National Instruments Corporation
    Inventors: Nikhil U. Kundargi, Achim Nahler, James Wesley McCoy
  • Patent number: 10841136
    Abstract: An apparatus to transmit and receive wireless communications is disclosed in which the transmit circuitry includes a square root raised cosine filter to pulse shape modulate signals and the receive circuitry includes a higher order Nyquist receive filter coupled to receive the input signals and remove the pulse shaping modulation. The cascaded combination of the transmit and receive filters has a frequency response equivalent to a higher order generalized raised cosine filter response.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: November 17, 2020
    Assignee: National Instruments Corporation
    Inventor: James Wesley McCoy
  • Patent number: 10708086
    Abstract: Techniques are disclosed relating to channel sounding. In some embodiments a transmitter transmits a periodic CAZAC sequence beginning at a point in time that corresponds to a timing signal (e.g., a pulse-per-second signal). In some embodiments, a receiver waits to begin processing received sequences for a time interval corresponding to the length of the CAZAC sequence, where the time interval begins at the same time as the timing signal. This may avoid a need for timing synchronization prior to processing, reduce processing and latency in receiver implementations, and may allow determination of a TOA as well as a channel impulse response estimate by correlating a received cyclically-shifted CAZAC sequence with a local version of the transmitted CAZAC sequence.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: July 7, 2020
    Assignee: National Instruments Corporation
    Inventors: Malik Muhammad Usman Gul, Ahsan Aziz, James Wesley McCoy
  • Patent number: 10567148
    Abstract: Techniques are disclosed relating to use of digital predistortion in the context of full-duplex radio. In some embodiments, an apparatus includes one or more antennas and is configured to simultaneously transmit and receive wireless signals via at least partially overlapping frequency resources using the one or more antennas. In some embodiments, the apparatus includes receive chain circuitry that is configured to process both wireless signals transmitted by the apparatus via the one or more antennas and over-the-air wireless signals from one or more other computing devices. In some embodiments, the apparatus includes one or more processing elements configured to determine one or more digital predistortion parameters based on the wireless signals transmitted by the apparatus via the one or more antennas and processed by the receive chain circuitry and apply predistortion to transmitted wireless signals based on the one or more digital predistortion parameters.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: February 18, 2020
    Assignee: National Instruments Corporation
    Inventors: James Wesley McCoy, Takao Inoue, Jaeweon Kim
  • Patent number: 10567065
    Abstract: A processor in a UE evaluates a radio frequency beam quality metric against a threshold, switches from a first beam to a second beam in response to determining the metric falls below the threshold, and transmits to a base station (BS) a report that includes beam measurements. The report indicates the UE has performed the switching and that the beam measurements are with respect to the second beam. A processor in a UE/BS associates narrower and broader beams, uses the narrower beam, rather than the broader beam, to transfer user data between the BS and the UE, evaluates a beam quality metric of the narrower beam against the threshold, and switches to using the broader beam, rather than the narrower beam, to transfer user data between the BS and the UE in response to determining the beam quality metric of the narrower beam falls below the threshold.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: February 18, 2020
    Assignee: National Instruments Corporation
    Inventors: Nikhil U. Kundargi, Achim Nahler, James Wesley McCoy
  • Publication number: 20190260549
    Abstract: Embodiments are disclosed for a new unified and flexible frame structure for 5G (5th generation) mobile telecommunications standard and related radio access technology (RAT). The disclosed embodiments use communication frames with multiple partition types and are able to span a wide range of 5G deployment scenarios in a flexible and scalable manner.
    Type: Application
    Filed: March 22, 2019
    Publication date: August 22, 2019
    Inventors: James Wesley McCoy, Nikhil U. Kundargi, Karl F. Nieman
  • Patent number: 10243715
    Abstract: Embodiments are disclosed for a new unified and flexible frame structure for 5G (5th generation) mobile telecommunications standard and related radio access technology (RAT). The disclosed embodiments use communication frames with multiple partition types and are able to span a wide range of 5G deployment scenarios in a flexible and scalable manner.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: March 26, 2019
    Assignee: National Instruments Corporation
    Inventors: James Wesley McCoy, Nikhil U. Kundargi, Karl F. Nieman
  • Publication number: 20190053072
    Abstract: A base station (BS)/user equipment (UE) for performing radio frequency beam management and recovery in communication with a UE/BS. The BS/UE includes a processor and a memory that stores first and second thresholds. The processor evaluates a beam quality metric against the first and second thresholds, performs beam switching and/or beam broadening in response to determining the beam quality metric falls below the first threshold, and performs a beam failure recovery procedure in response to determining the beam quality metric falls below the second threshold.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 14, 2019
    Inventors: Nikhil U. Kundargi, Achim Nahler, James Wesley McCoy
  • Publication number: 20190052344
    Abstract: A processor in a UE evaluates a radio frequency beam quality metric against a threshold, switches from a first beam to a second beam in response to determining the metric falls below the threshold, and transmits to a base station (BS) a report that includes beam measurements. The report indicates the UE has performed the switching and that the beam measurements are with respect to the second beam. A processor in a UE/BS associates narrower and broader beams, uses the narrower beam, rather than the broader beam, to transfer user data between the BS and the UE, evaluates a beam quality metric of the narrower beam against the threshold, and switches to using the broader beam, rather than the narrower beam, to transfer user data between the BS and the UE in response to determining the beam quality metric of the narrower beam falls below the threshold.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 14, 2019
    Inventors: Nikhil U. Kundargi, Achim Nahler, James Wesley McCoy
  • Patent number: 10201020
    Abstract: A system and method for performing multi-user random access procedures in a mobile telecommunications network between a base station and a user equipment (UE) having a plurality of antennas includes transmitting a random access signal set (RASS) message using one or more antennas of the plurality of UE antennas. In response to receiving the RASS message, the base station transmitting a random access response physical downlink control channel (RAR-PDCCH) message. In response to receiving the RAR-PDCCH message, transmitting a reciprocity reference signal set (RRSS) signal using the plurality of UE antennas.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: February 5, 2019
    Assignee: National Instruments Corporation
    Inventors: James Wesley McCoy, Nikhil U. Kundargi, Karl F. Nieman, Jr., Lothar Wenzel, Marcus Monroe
  • Patent number: 10103928
    Abstract: Nyquist filters for pulse shaping and related matched filters in wireless communications are disclosed that provide improved performance. The disclosed embodiments recognize that the second derivative of the raised cosine function is discontinuous in the frequency domain and that the first derivative of the square root raised cosine is discontinuous in the frequency domain. As such, a generalization for the raised cosine filter is applied, and improvements can be made to the raised cosine function time-frequency localization and ultimately to tradeoffs between inter-symbol interference and adjacent channel interference by introducing smoothness to the higher order derivatives of the frequency response.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: October 16, 2018
    Assignee: National Instruments Corporation
    Inventors: James Wesley McCoy, Lothar Wenzel
  • Publication number: 20180123771
    Abstract: Techniques are disclosed relating to use of digital predistortion in the context of full-duplex radio. In some embodiments, an apparatus includes one or more antennas and is configured to simultaneously transmit and receive wireless signals via at least partially overlapping frequency resources using the one or more antennas. In some embodiments, the apparatus includes receive chain circuitry that is configured to process both wireless signals transmitted by the apparatus via the one or more antennas and over-the-air wireless signals from one or more other computing devices. In some embodiments, the apparatus includes one or more processing elements configured to determine one or more digital predistortion parameters based on the wireless signals transmitted by the apparatus via the one or more antennas and processed by the receive chain circuitry and apply predistortion to transmitted wireless signals based on the one or more digital predistortion parameters.
    Type: Application
    Filed: December 29, 2017
    Publication date: May 3, 2018
    Inventors: James Wesley McCoy, Takao Inoue, Jaeweon Kim
  • Publication number: 20180084586
    Abstract: A system and method for performing multi-user random access procedures in a mobile telecommunications network between a base station and a user equipment (UE) having a plurality of antennas includes transmitting a random access signal set (RASS) message using one or more antennas of the plurality of UE antennas. In response to receiving the RASS message, the base station transmitting a random access response physical downlink control channel (RAR-PDCCH) message. In response to receiving the RAR-PDCCH message, transmitting a reciprocity reference signal set (RRSS) signal using the plurality of UE antennas.
    Type: Application
    Filed: September 19, 2017
    Publication date: March 22, 2018
    Inventors: JAMES WESLEY MCCOY, NIKHIL U. KUNDARGI, KARL F. NIEMAN, JR., LOTHAR WENZEL, MARCUS MONROE
  • Publication number: 20170338997
    Abstract: Nyquist filters for pulse shaping and related matched filters in wireless communications are disclosed that provide improved performance. The disclosed embodiments recognize that the second derivative of the raised cosine function is discontinuous in the frequency domain and that the first derivative of the square root raised cosine is discontinuous in the frequency domain. As such, a generalization for the raised cosine filter is applied, and improvements can be made to the raised cosine function time-frequency localization and ultimately to tradeoffs between inter-symbol interference and adjacent channel interference by introducing smoothness to the higher order derivatives of the frequency response.
    Type: Application
    Filed: April 13, 2017
    Publication date: November 23, 2017
    Inventors: James Wesley McCoy, Lothar Wenzel