Patents by Inventor James William Fleming, Jr.

James William Fleming, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7421174
    Abstract: A silicate optical fiber comprises a graded index silicate core co-doped with aluminum oxide, phosphorus oxide, germanium oxide and fluorine in unique compositions that we have discovered allow multimode, multi-wavelength operation without significant intermodal dispersion. Illustratively, the core comprises a multiplicity of compositions whose refractive indices are graded from a maximum at or near the center of the core to a minimum at the interface with the cladding. Each core composition resides within a sub-volume of a 5 dimensional phase space in which an optimum core profile shape is essentially constant over the wavelength range of operation of the fiber. For operation in the wavelength range of about 0.78 ?m to 1.55 ?m, each composition preferably comprises no more than approximately 6 mole % Al2O3, 9 mole % P2O5, 6 mole % GeO2, 6 mole % F, and 90-100 mole % SiO2.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: September 2, 2008
    Assignee: Furakawa Electric North America; Inc.
    Inventors: James William Fleming, Jr., George Edward Oulundsen, III
  • Patent number: 6553790
    Abstract: A silica-based core rod is traversed by a heat source along its longitudinal axis, to provide heated, softened regions. During the traverse, compressive or tensile movements are provided along the rod's longitudinal axis, these movements inducing, respectively, increases or decreases in the core diameter at the softened regions. By providing selective core diameter increases and/or decreases across the entire length of the core rod, a desired core diameter profile is attained. It is possible to attain a substantially uniform core diameter, or a varying core diameter profile that provides particular properties, such as systematically varying dispersion. In addition, due to the ability to increase core diameter and core rod diameter in a controlled manner, it is possible to make larger core rods, and in turn larger fiber preforms, than presently possible.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: April 29, 2003
    Assignee: Fitel USA Corp.
    Inventors: James William Fleming, Jr., George John Zydzik
  • Patent number: 6446468
    Abstract: An improved technique for assembling and drawing fiber from preforms is provided. In one embodiment, the technique involves providing a core rod assembly comprising a core rod and a bushing attached at an end of the assembly. The core rod assembly is inserted into an unsintered overcladding tube, and secured to the tube such that the core rod assembly is suspended within. The overcladding tube and the core rod assembly are heated to sinter the overcladding tube and thereby form a preform assembly. During the heating step, the bushing comes into contact with the interior of the overcladding tube, and, because the bushing has a larger diameter than the core rod, an annular gap is maintained between the core rod assembly and the interior of the overcladding tube. It is then possible to attach a draw handle to the preform assembly, place the preform assembly into a draw tower, and draw fiber from the preform assembly by an overclad during draw technique.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: September 10, 2002
    Assignee: Fitel USA Corp.
    Inventors: James William Fleming, Jr., Sandeep Kakar, Richard M. Lum, Eric M. Monberg
  • Patent number: 6305195
    Abstract: An improved process for fabricating a refractory dielectric article, in particular silica optical fiber, is provided. The fabrication process involves joining of two elongated bodies—typically silica preforms—end-to-end by use of an isothermal plasma torch technique. A long preform made in this manner allows drawing of optical fiber with less down-time and waste than current processes. The plasma torch technique also produces low perturbations within the resultant preform, thereby increasing the amount of usable fiber.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: October 23, 2001
    Assignee: Agere Systems Guardian Corp.
    Inventors: James William Fleming, Jr., George John Zydzik
  • Patent number: 6041623
    Abstract: The smoothness of refractory dielectric bodies, particularly silica sol-gel bodies, is substantially improved by a relatively straightforward treatment. In particular, the surface of the body is treated with a plasma fireball, such as induced by a plasma torch. The treatment is able to reduce the roughness, as measured by RA, in overcladding tubes formed by a sol-gel process by at least a factor of 2, typically at least a factor of 5. It is also possible to improve the smoothness of silica tubes that are drawn from a billet. Typically, the process reduces the roughness of silica bodies to an RA of about 1 microinch or less.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: March 28, 2000
    Assignee: Lucent Technologies Inc.
    Inventor: James William Fleming, Jr.
  • Patent number: 5979190
    Abstract: A refractory dielectric body is heated with a plasma fireball at conditions which do not result in substantial removal of a surface portion of the body, yet which are sufficient to reduce both surface and bulk impurities. Typically, the body is treated with the plasma in the absence of simultaneous deposition of material onto the body. Advantageously, an isothermal, oxygen or oxygen-containing plasma is utilized. The invention is useful for reducing chlorine impurities by at least about 30% to a depth of at least about 10 .mu.m, with accompanying reduction of hydroxyl impurities. The invention thus provides a useful method for reducing the concentration of impurities that contribute to imperfections during the process of drawing fiber from an optical fiber preform, without requiring substantial removal of the surface of the preform.
    Type: Grant
    Filed: July 17, 1998
    Date of Patent: November 9, 1999
    Assignee: Lucent Technologies Inc.
    Inventors: James William Fleming, Jr., Robert M. Pafchek
  • Patent number: 5861047
    Abstract: A refractory dielectric body is heated with a plasma torch at conditions which do not result in substantial removal of a surface portion of the body, yet which are sufficient to reduce both surface and bulk impurities. Typically, the body is solid, e.g., a rod as opposed to a tube, and is treated with the plasma in the absence of simultaneous deposition of material onto the body. Advantageously, an isothermal plasma torch is utilized, and the torch advantageously produces an oxygen or oxygen-containing plasma. The invention is useful for reducing chlorine impurities by at least about 30% to a depth of at least about 10 .mu.m, with accompanying reduction of hydroxyl impurities. The invention thus provides a useful method for reducing the concentration of impurities that contribute to imperfections during the process of drawing fiber from an optical fiber preform, without requiring substantial removal of the surface of the preform.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: January 19, 1999
    Assignee: Lucent Technologies Inc.
    Inventors: James William Fleming, Jr., Robert M. Pafchek
  • Patent number: 5698124
    Abstract: A fiber drawing apparatus is provided with an improved fiber draw furnace wherein an inner zirconia tube is surrounded by a radially-spaced annular insulating region of magnesia within a silica beaker. While the magnesia has a melting point approximately the same as zirconia, the electrical conductivity of magnesia is substantially lower, enabling it to withstand higher RF power. Moreover magnesia is more soluble than zirconia in silica, reducing the likelihood of particulate contamination of the fiber.
    Type: Grant
    Filed: October 31, 1995
    Date of Patent: December 16, 1997
    Assignee: Lucent Technologies Inc.
    Inventors: Frank Vincent DiMarcello, James William Fleming, Jr., Arthur Clifford Hart, Jr., Richard Garner Huff, Karen S. Kranz
  • Patent number: 5692087
    Abstract: An optical fiber formed from a glass preform substantially free of OH impurities is disclosed. The optical fiber is made to be free of OH impurities by a method having the steps of introducing a moving stream of vapor mixture including at least one compound glass-forming precursor together with an oxidizing medium into a tube, while generating a hydrogen-fee isothermal plasma on an outer surface of the tube to react the mixture and produce a glassy deposit on an inner surface of the tube. The glass preform is drawn to produce the optical fiber.
    Type: Grant
    Filed: March 13, 1995
    Date of Patent: November 25, 1997
    Assignee: Lucent Technologies Inc.
    Inventors: Fred Paul Partus, Gordon Albert Thomas, Robert Michael Atkins, James William Fleming, Jr.
  • Patent number: 5672192
    Abstract: In accordance with the invention, an optical fiber is made by the steps of providing an optical fiber preform having a longitudinal axis, rotating the preform about the axis, directing onto the preform a plasma torch which is reciprocated over a limited region parallel to the axis to define a heated region, and drawing a fiber from the heated region. Apparatus for making optical fiber comprises a rotatable mount for securing one end of a preform and rotating it about a vertical axis, a plasma torch for heating a drawing region on the preform, a positioning stage for moving the torch parallel to the vertical axis in a reciprocating manner, and a fiber drawing apparatus for drawing a fiber from the heated region of the preform.
    Type: Grant
    Filed: May 30, 1996
    Date of Patent: September 30, 1997
    Assignee: Lucent Technologies Inc.
    Inventor: James William Fleming, Jr.
  • Patent number: 4033667
    Abstract: A multimode optical fiber waveguide with graded refractive index for lessening modal dispersion depends upon simultaneous grading of both P.sub.2 O.sub.5 and B.sub.2 O.sub.3 within an otherwise generally unmodified silica glass. P.sub.2 O.sub.5 is at a maximum in the axial core region, while B.sub.2 O.sub.3 is generally the only modifier in the peripheral core region. The defined profile, which depends critically upon P.sub.2 O.sub.5 content in the axial composition and somewhat less critically upon the B.sub.2 O.sub.3 peripheral composition content, is near optimum from the standpoint of mode dispersion and remains so for the entire useful range of carrier wavelength (generally defined as from 0.5 to 1.1 .mu.m). Numerical aperture for fibers of the invention are typically at a level of 0.3.
    Type: Grant
    Filed: September 12, 1975
    Date of Patent: July 5, 1977
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventor: James William Fleming, Jr.
  • Patent number: 4011006
    Abstract: High silica content optical glasses, containing more volatile oxides such as GeO.sub.2 and B.sub.2 O.sub.3, are produced by plasma fusion of powders without inordinately high loss of the more volatile constituents. The powders are produced by a process including the heat treatment of intimately mixed materials, which include the glass forming constituents. Small quantities of GeO.sub.2 are included in borosilicate glass to suppress bubble formation. Pairs of glass compositions have been found, with sufficient index of refraction difference to produce guidance in optical transmission lines, while possessing sufficient thermal expansion match to reduce stresses in the line.
    Type: Grant
    Filed: December 17, 1975
    Date of Patent: March 8, 1977
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: James William Fleming, Jr., Raymond Edward Jaeger, Thomas John Miller
  • Patent number: 3989350
    Abstract: A multimode optical fiber waveguide with graded refractive index for lessening modal dispersion with the gradient produced at least in part by radially decreasing boron oxide content outwardly from the core center within a high silica glass core minimizes modal dispersion by use of a non-parabolic grading function. The optimum gradient for a simple binary borosilicate system for a wavelength of from approximately 0.5 to 1.1 micrometers corresponds with .alpha. = 1.77 .+-. 10 percent in the equation n = n.sub.1 [1-2.DELTA.(r/a).sup..alpha.].sup.1/2, in which n.sub.1 is the axial core index r is the distance from the fiber axis, a is the core radius, .DELTA. is the relative index difference between core center and cladding and .alpha. is a power law exponent which characterizes the profile.
    Type: Grant
    Filed: September 12, 1975
    Date of Patent: November 2, 1976
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: Leonard George Cohen, James William Fleming, Jr., William George French
  • Patent number: 3954431
    Abstract: High silica content optical glasses, containing more volatile oxides such as GeO.sub.2 and B.sub.2 O.sub.3, are produced by plasma fusion of powders without inordinately high loss of the more volatile constituents. The powders are produced by a process including the heat treatment of intimately mixed materials, which include the glass forming constituents. Small quantities of GeO.sub.2 are included in borosilicate glass to suppress bubble formation. Pairs of glass compositions have been found, with sufficient index of refraction difference to produce guidance in optical transmission lines, while possessing sufficient thermal expansion match to reduce stresses in the line.
    Type: Grant
    Filed: September 26, 1974
    Date of Patent: May 4, 1976
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: James William Fleming, Jr., Raymond Edward Jaeger, Thomas John Miller