Patents by Inventor James Y. Jiang

James Y. Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210212668
    Abstract: This disclosure relates to combined frequency and angle compounding for speckle reduction in ultrasound imaging Such combined frequency and angle compounding can result in a multiplicative speckle reduction compared to using either frequency compounding or angle compounding alone. Compounding methods of this disclosure can make use of the full aperture of the ultrasound probe when acquiring individual images, hence there can be no compromise in resolution. In disclosed embodiments, ultrasound images can be obtained while an ultrasound probe is moving and the relative position and orientation of the ultrasound images can be determined from a measurement of the position and orientation of the ultrasound probe. Certain embodiments can correct for the movement and distortion of an object being imaged during the image acquisition.
    Type: Application
    Filed: May 21, 2019
    Publication date: July 15, 2021
    Inventors: Yilei LI, Steven CHU, Noah Yuzo TOYONAGA, James Y. JIANG, Alex E. CABLE
  • Patent number: 9784561
    Abstract: An optical imaging system includes an optical radiation source (410, 510), a frequency clock module outputting frequency clock signals (420), an optical interferometer (430), a data acquisition (DAQ) device (440) triggered by the frequency clock signals, and a computer (450) to perform multi-dimensional optical imaging of the samples. The frequency clock signals are processed by software or hardware to produce a record containing frequency-time relationship of the optical radiation source (410, 510) to externally clock the sampling process of the DAQ device (440). The system may employ over-sampling and various digital signal processing methods to improve image quality. The system further includes multiple stages of routers (1418, 1425) connecting the light source (1410) with a plurality of interferometers (1420a-1420n) and a DAQ system (1450) externally clocked by frequency clock signals to perform high-speed multi-channel optical imaging of samples.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: October 10, 2017
    Assignee: Thorlabs, Inc.
    Inventors: James Y. Jiang, Scott Barry, Alex E. Cable
  • Publication number: 20170248405
    Abstract: An optical imaging system includes an optical radiation source (410, 510), a frequency clock module outputting frequency clock signals (420), an optical interferometer (430), a data acquisition (DAQ) device (440) triggered by the frequency clock signals, and a computer (450) to perform multi-dimensional optical imaging of the samples. The frequency clock signals are processed by software or hardware to produce a record containing frequency-time relationship of the optical radiation source (410, 510) to externally clock the sampling process of the DAQ device (440). The system may employ over-sampling and various digital signal processing methods to improve image quality. The system further includes multiple stages of routers (1418, 1425) connecting the light source (1410) with a plurality of interferometers (1420a-1420n) and a DAQ system (1450) externally clocked by frequency clock signals to perform high-speed multi-channel optical imaging of samples.
    Type: Application
    Filed: February 27, 2014
    Publication date: August 31, 2017
    Applicant: Thorlabs, Inc.
    Inventors: James Y. Jiang, Scott Barry, Alex E. Cable
  • Publication number: 20150241202
    Abstract: An optical imaging system includes an optical radiation source (410, 510), a frequency clock module outputting frequency clock signals (420), an optical interferometer (430), a data acquisition (DAQ) device (440) triggered by the frequency clock signals, and a computer (450) to perform multi-dimensional optical imaging of the samples. The frequency clock signals are processed by software or hardware to produce a record containing frequency-time relationship of the optical radiation source (410, 510) to externally clock the sampling process of the DAQ device (440). The system may employ over-sampling and various digital signal processing methods to improve image quality. The system further includes multiple stages of routers (1418, 1425) connecting the light source (1410) with a plurality of interferometers (1420a-1420n) and a DAQ system (1450) externally clocked by frequency clock signals to perform high-speed multi-channel optical imaging of samples.
    Type: Application
    Filed: February 27, 2014
    Publication date: August 27, 2015
    Applicant: Thorlabs, Inc.
    Inventors: James Y. Jiang, Scott Barry, Alex E. Cable
  • Patent number: 8705047
    Abstract: An optical imaging system includes an optical radiation source, a frequency clock module outputting frequency clock signals, an optical interferometer, a data acquisition (DAQ) device triggered by the frequency clock signals, and a computer to perform multi-dimensional optical imaging of the samples. The frequency clock signals are processed by software or hardware to produce a record containing frequency-time relationship of the optical radiation source to externally clock the sampling process of the DAQ device. The system may employ over-sampling and various digital signal processing methods to improve image quality. The system further includes multiple stages of routers connecting the light source with a plurality of interferometers and a DAQ system externally clocked by frequency clock signals to perform high-speed multi-channel optical imaging of samples.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: April 22, 2014
    Assignee: Thorlabs, Inc.
    Inventors: James Y. Jiang, Scott Barry, Alex E. Cable
  • Publication number: 20110255095
    Abstract: An optical imaging system includes an optical radiation source (410, 510), a frequency clock module outputting frequency clock signals (420), an optical interferometer (430), a data acquisition (DAQ) device (440) triggered by the frequency clock signals, and a computer (450) to perform multi-dimensional optical imaging of the samples. The frequency clock signals are processed by software or hardware to produce a record containing frequency-time relationship of the optical radiation source (410, 510) to externally clock the sampling process of the DAQ device (440). The system may employ over-sampling and various digital signal processing methods to improve image quality. The system further includes multiple stages of routers (1418, 1425) connecting the light source (1410) with a plurality of interferometers (1420a-1420n) and a DAQ system (1450) externally clocked by frequency clock signals to perform high-speed multi-channel optical imaging of samples.
    Type: Application
    Filed: April 22, 2011
    Publication date: October 20, 2011
    Applicant: THORLABS, INC.
    Inventors: James Y. Jiang, Scott Barry, Alex E. Cable
  • Patent number: 7936462
    Abstract: An optical imaging system includes an optical radiation source (410, 510), a frequency clock module outputting frequency clock signals (420), an optical interferometer (430), a data acquisition (DAQ) device (440) triggered by the frequency clock signals, and a computer (450) to perform multi-dimensional optical imaging of the samples. The frequency clock signals are processed by software or hardware to produce a record containing frequency-time relationship of the optical radiation source (410, 510) to trigger the sampling process of the DAQ device (440). The system may employ over-sampling and various digital signal processing methods to improve image quality. The system further includes multiple stages of routers (1418, 1425) connecting the light source (1410) with a plurality of interferometers (1420a-1420n) and a DAQ system (1450) triggered by frequency clock signals to perform high-speed multi-channel optical imaging of samples.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: May 3, 2011
    Assignee: Thorlabs, Inc.
    Inventors: James Y. Jiang, Scott Barry, Alex E. Cable
  • Publication number: 20080175465
    Abstract: An optical imaging system includes an optical radiation source (410, 510), a frequency clock module outputting frequency clock signals (420), an optical interferometer (430), a data acquisition (DAQ) device (440) triggered by the frequency clock signals, and a computer (450) to perform multi-dimensional optical imaging of the samples. The frequency clock signals are processed by software or hardware to produce a record containing frequency-time relationship of the optical radiation source (410, 510) to trigger the sampling process of the DAQ device (440). The system may employ over-sampling and various digital signal processing methods to improve image quality. The system further includes multiple stages of routers (1418, 1425) connecting the light source (1410) with a plurality of interferometers (1420a-1420n) and a DAQ system (1450) triggered by frequency clock signals to perform high-speed multi-channel optical imaging of samples.
    Type: Application
    Filed: January 18, 2008
    Publication date: July 24, 2008
    Applicant: THORLABS, INC.
    Inventors: James Y. Jiang, Scott Barry, Alex E. Cable