Patents by Inventor Jami M. Hanks

Jami M. Hanks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080099112
    Abstract: This melt-pourable explosive composition shares explosive properties comparable to those of Tritonal and is melt-pourable and castable under conditions comparable to those of Tritonal, but experiences equal or less impact, shock, and thermal sensitivity and avoids the issues of toxicity associated with trinitrotoluene. The trinitrotoluene component of Tritonal is replaced with one or more mononitro aromatic and/or dinitro aromatic melt-pourable binders, such as dinitroanisole, which may be melt poured without presenting the toxicity drawbacks experienced with the use of TNT. The melt-pourable binder may also be combined with a processing aid selected from the group consisting of alkylnitroanilines and arylnitroanilines. The composition also includes oxidizer particles, which are preferably inorganic oxidizer particles, and a reactive metallic fuel, such as aluminum.
    Type: Application
    Filed: November 9, 2005
    Publication date: May 1, 2008
    Inventors: Daniel W. Doll, Jami M. Hanks, Alan G. Allred, John B. Niles
  • Patent number: 7238336
    Abstract: A method of forming ?-alane. The method includes reacting aluminum trichloride and an alkali metal hydride to form an alane-ether complex solution. An aqueous diethyl ether solution is optionally added to the alane-ether complex solution to form a partially hydrolyzed ether/alane-ether complex solution. A solution of a first crystallization additive is added to the alane-ether complex solution or to the aqueous ether/alane-ether complex solution to form a crystallization solution. The first crystallization additive is selected from the group consisting of polystyrene, polybutadiene, polystyrene-co-polybutadiene, polyisoprene, poly-alpha-methylstyrene, polystyrene-co-polyindene, poly-alpha-pinene, and mixtures thereof. Optionally, a second crystallization additive is added to the crystallization solution.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: July 3, 2007
    Assignee: Alliant Techsystems Inc.
    Inventors: Gary K. Lund, Jami M. Hanks, Harold E Johnston
  • Patent number: 7067024
    Abstract: This melt-pourable explosive composition shares explosive properties comparable to those of trinitrotoluene and is melt-pourable and castable under conditions comparable to those of trinitrotoluene, but experiences equal or less impact, shock, and thermal sensitivity and avoids the issues of toxicity associated with trinitrotoluene. Trinitrotoluene is replaced with one or more mononitro aromatic and/or dinitro aromatic melt-pourable binders, such as dinitroanisole, which can be melt poured without presenting the toxicity drawbacks experienced with the use of TNT. The melt-pourable binder can also be combined with a processing aid selected from the group consisting of alkylnitroanilines and arylnitroanilines. The composition also includes oxidizer particles, which are preferably inorganic oxidizer particles.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: June 27, 2006
    Assignee: Alliant Techsystems Inc.
    Inventors: Daniel W. Doll, Jami M. Hanks, Alan G. Allred, John B. Niles
  • Patent number: 6984746
    Abstract: A method of forming ?-alane. The method includes reacting aluminum trichloride and an alkali metal hydride to form an alane-ether complex solution. An aqueous ether solution is optionally added to the alane-ether complex solution to form a partially hydrolyzed ether/alane-ether complex solution. A solution of a crystallization additive is added to the alane-ether complex solution or to the aqueous ether/alane-ether complex solution to form a crystallization solution. The crystallization additive is selected from the group consisting of squalene, cyclododecatriene, norbornylene, norbornadiene, a phenyl terminated polybutadiene, 2,4-dimethyl anisole, 3,5-dimethyl anisole, 2,6-dimethyl anisole, polydimethyl siloxane, and mixtures thereof. Ether is removed from the crystallization solution to crystallize the ?-alane.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: January 10, 2006
    Assignee: Alliant Techsystems Inc.
    Inventors: Gary K. Lund, Jami M. Hanks, Harold E. Johnston
  • Patent number: 6964714
    Abstract: This melt-pourable explosive composition shares explosive properties comparable to those of Tritonal and is melt-pourable and castable under conditions comparable to those of Tritonal, but experiences equal or less impact, shock, and thermal sensitivity and avoids the issues of toxicity associated with trinitrotoluene. The trinitrotoluene component of Tritonal is replaced with one or more mononitro aromatic and/or dinitro aromatic melt-pourable binders, such as dinitroanisole, which can be melt poured without presenting the toxicity drawbacks experienced with the use of TNT. The melt-pourable binder can also be combined with a processing aid selected from the group consisting of alkylnitroanilines and arylnitroanilines. The composition also includes oxidizer particles, which are preferably inorganic oxidizer particles, and a reactive metallic fuel, such as aluminum.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: November 15, 2005
    Assignees: Alliant Techsystems Inc., The United States of America as represented by the Secretary of the Army
    Inventors: Daniel W. Doll, Jami M. Hanks, Alan G. Allred, John B. Niles
  • Patent number: 6881847
    Abstract: A method is provided for the synthesis of nitramines and the recovery of the nitramines from a clathrate.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: April 19, 2005
    Assignee: Alliant Techsystems Inc.
    Inventors: Thomas K. Highsmith, Jami M. Hanks, Stephen P. Velarde, Jeffrey Bottaro
  • Publication number: 20040129356
    Abstract: A melt-cast explosive which shares comparable explosive properties to those of COMP B explosives and is melt-pourable and castable under conditions comparable to those of COMP B explosives, but experiences less impact, shock, and thermal sensitivity and avoids the issues of toxicity associated with COMP B. A fundamental and well-accepted component of COMP B, i.e., trinitrotoluene (TNT), is replaced with one or more mononitro-substituted or dinitro-substituted melt-cast binders, such as dinitroanisole, which can be melt-cast without presenting the toxicity drawbacks experienced with the use of TNT. The melt-cast binder can also be combined with a processing aid selected from the group consisting of alkylnitroanilines and arylnitroanilines. Preferably, the composition also includes coarse oxidizer particles and energetic filler in fine particulate form.
    Type: Application
    Filed: August 22, 2003
    Publication date: July 8, 2004
    Inventors: Daniel W. Doll, Jami M. Hanks, Thomas K. Highsmith, Gary K. Lund
  • Publication number: 20040024223
    Abstract: A method is provided for the synthesis of nitramines and the recovery of the nitramines from a clathrate.
    Type: Application
    Filed: June 5, 2003
    Publication date: February 5, 2004
    Inventors: Thomas K. Highsmith, Jami M. Hanks, Stephen P. Velarde, Jeffrey Bottaro
  • Patent number: 6648998
    Abstract: This melt-cast explosive shares comparable explosive properties to those of COMP B explosives and is melt-pourable and castable under conditions comparable to those of COMP B explosives, but experiences less impact, shock, and thermal sensitivity and avoids the issues of toxicity associated with COMP B. A fundamental and well-accepted component of COMP B, i.e., trinitrotoluene (TNT), is replaced with one or more mononitro-substituted or dinitro-substituted melt-cast binders, such as dinitroanisole, which can be melt cast without presenting the toxicity drawbacks experienced with the use of TNT. The melt-cast binder can also be combined with a processing aid selected from the group consisting of alkylnitroanilines and arylnitroanilines. Preferably, the composition also includes coarse oxidizer particles and energetic filler in fine particulate form.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: November 18, 2003
    Assignee: Alliant Techsystems Inc.
    Inventors: Daniel W. Doll, Jami M. Hanks, Thomas K. Highsmith, Gary K. Lund, John B. Niles
  • Patent number: 6603018
    Abstract: A method is provided for the synthesis of nitramines and the recovery of the nitramines from a clathrate.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: August 5, 2003
    Assignee: Alliant Techsystems Inc.
    Inventors: Thomas K. Highsmith, Jami M. Hanks, Stephen P. Velarde, Jeffrey Bottaro
  • Publication number: 20030140993
    Abstract: This melt-pourable explosive composition shares comparable explosive properties to those of Tritonal and is melt-pourable and castable under conditions comparable to those of Tritonal, but experiences equal or less impact, shock, and thermal sensitivity and avoids the issues of toxicity associated with trinitrotoluene. The trinitrotoluene component of Tritonal is replaced with one or more mononitro aromatic and/or dinitro aromatic melt-pourable binders, such as dinitroanisole, which can be melt poured without presenting the toxicity drawbacks experienced with the use of TNT. The melt-pourable binder can also be combined with a processing aid selected from the group consisting of alkylnitroanilines and arylnitroanilines. The composition also includes oxidizer particles, which are preferably inorganic oxidizer particles, and reactive metallic fuel, such as aluminum.
    Type: Application
    Filed: June 27, 2001
    Publication date: July 31, 2003
    Inventors: Daniel W. Doll, Jami M. Hanks, Alan G. Allred, John B. Niles
  • Publication number: 20030005988
    Abstract: This melt-pourable explosive composition shares comparable explosive properties to those of trinitrotoluene and is melt-pourable and castable under conditions comparable to those of trinitrotoluene, but experiences equal or less impact, shock, and thermal sensitivity and avoids the issues of toxicity associated with trinitrotoluene. Trinitrotoluene is replaced with one or more mononitro aromatic and/or dinitro aromatic melt-pourable binders, such as dinitroanisole, which can be melt poured without presenting the toxicity drawbacks experienced with the use of TNT. The melt-pourable binder can also be combined with a processing aid selected from the group consisting of alkylnitroanilines and arylnitroanilines. The composition also includes oxidizer particles, which are preferably inorganic oxidizer particles.
    Type: Application
    Filed: June 27, 2001
    Publication date: January 9, 2003
    Inventors: Daniel W. Doll, Jami M. Hanks, Alan G. Allred, John B. Niles
  • Publication number: 20020156291
    Abstract: A method is provided for the synthesis of nitramines, and the recovery of the nitramines from a clathrate.
    Type: Application
    Filed: January 29, 2002
    Publication date: October 24, 2002
    Inventors: Thomas K. Highsmith, Jami M. Hanks, Stephen P. Velarde, Jeffrey Bottaro
  • Publication number: 20020038682
    Abstract: This melt-cast explosive shares comparable explosive properties to those of COMP B explosives and is melt-pourable and castable under conditions comparable to those of COMP B explosives, but experiences less impact, shock, and thermal sensitivity and avoids the issues of toxicity associated with COMP B. A fundamental and well-accepted component of COMP B, i.e., trinitrotoluene (TNT), is replaced with one or more mononitro-substituted or dinitro-substituted melt-cast binders, such as dinitroanisole, which can be melt cast without presenting the toxicity drawbacks experienced with the use of TNT. The melt-cast binder can also be combined with a processing aid selected from the group consisting of alkylnitroanilines and arylnitroanilines. Preferably, the composition also includes coarse oxidizer particles and energetic filler in fine particulate form.
    Type: Application
    Filed: December 21, 2000
    Publication date: April 4, 2002
    Inventors: Daniel W. Doll, Jami M. Hanks, Thomas K. Highsmith, Gary K. Lund