Patents by Inventor Jamie LEWIS

Jamie LEWIS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11328915
    Abstract: A mass spectrometry method comprising steps of generating an ion beam from an ion source; directing the ion beam into a collision cell; introducing into the collision cell through a gas inlet on the collision cell a charge-neutral analyte gas or reaction gas; ionizing the analyte gas or reaction gas in the collision cell by means of collisions between the analyte gas or reaction gas and the ion beam; transmitting ions from the ionized analyte gas or reaction gas from the collision cell into a mass analyzer; and mass analyzing the transmitted ions of the ionized analyte or reaction gas. The methods can be applied in isotope ratio mass spectrometry to determine the isotope abundance or isotope ratio of a reaction gas used in mass shift reactions between the gas and sample ions, to determine a corrected isotope abundance or ratio of the sample ions.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: May 10, 2022
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Johannes Schwieters, Henning Wehrs, Jamie Lewis
  • Publication number: 20200251322
    Abstract: A mass spectrometry method comprising steps of generating an ion beam from an ion source; directing the ion beam into a collision cell; introducing into the collision cell through a gas inlet on the collision cell a charge-neutral analyte gas or reaction gas; ionizing the analyte gas or reaction gas in the collision cell by means of collisions between the analyte gas or reaction gas and the ion beam; transmitting ions from the ionized analyte gas or reaction gas from the collision cell into a mass analyzer; and mass analyzing the transmitted ions of the ionized analyte or reaction gas. The methods can be applied in isotope ratio mass spectrometry to determine the isotope abundance or isotope ratio of a reaction gas used in mass shift reactions between the gas and sample ions, to determine a corrected isotope abundance or ratio of the sample ions.
    Type: Application
    Filed: April 23, 2020
    Publication date: August 6, 2020
    Inventors: Johannes Schweiters, Henning Wehrs, Jamie Lewis
  • Patent number: 10651023
    Abstract: A mass spectrometry method comprising steps of generating an ion beam from an ion source; directing the ion beam into a collision cell; introducing into the collision cell through a gas inlet on the collision cell a charge-neutral analyte gas or reaction gas; ionizing the analyte gas or reaction gas in the collision cell by means of collisions between the analyte gas or reaction gas and the ion beam; transmitting ions from the ionized analyte gas or reaction gas from the collision cell into a mass analyzer; and mass analyzing the transmitted ions of the ionized analyte or reaction gas. The methods can be applied in isotope ratio mass spectrometry to determine the isotope abundance or isotope ratio of a reaction gas used in mass shift reactions between the gas and sample ions, to determine a corrected isotope abundance or ratio of the sample ions.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: May 12, 2020
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Johannes Schwieters, Henning Wehrs, Jamie Lewis
  • Publication number: 20180240662
    Abstract: A mass spectrometry method comprising steps of generating an ion beam from an ion source; directing the ion beam into a collision cell; introducing into the collision cell through a gas inlet on the collision cell a charge-neutral analyte gas or reaction gas; ionizing the analyte gas or reaction gas in the collision cell by means of collisions between the analyte gas or reaction gas and the ion beam; transmitting ions from the ionized analyte gas or reaction gas from the collision cell into a mass analyzer; and mass analyzing the transmitted ions of the ionized analyte or reaction gas. The methods can be applied in isotope ratio mass spectrometry to determine the isotope abundance or isotope ratio of a reaction gas used in mass shift reactions between the gas and sample ions, to determine a corrected isotope abundance or ratio of the sample ions.
    Type: Application
    Filed: February 23, 2018
    Publication date: August 23, 2018
    Inventors: Johannes SCHWIETERS, Henning WEHRS, Jamie LEWIS