Patents by Inventor Jamie M. Sullivan

Jamie M. Sullivan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9970883
    Abstract: Disclosed are apparatus and methods for inspecting or measuring a specimen. A system comprises an illumination channel for generating and deflecting a plurality of incident beams to form a plurality of spots that scan across a segmented line comprised of a plurality of scan portions of the specimen. The system also includes one or more detection channels for sensing light emanating from a specimen in response to the incident beams directed towards such specimen and collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion. The one or more detection channels include at least one longitudinal side channel for longitudinally collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: May 15, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Ralph Johnson, Evegeny Churin, Wenjian Cai, Yong Mo Moon
  • Patent number: 9891175
    Abstract: A system to generate multiple beam lines in an oblique angle multi-beam spot scanning wafer inspection system includes a beam scanning device configured to scan a beam of illumination, an objective lens oriented at an oblique angle relative to the surface of a sample and with an optical axis perpendicular to a first scanning direction on the sample, and one or more optical elements positioned between the objective lens and the beam scanning device. The one or more optical elements split the beam into two or more offset beams such that the two or more offset beams are separated in a least a second direction perpendicular to the first direction. The one or more optical elements further modify the phase characteristics of the two or more offset beams such that the two or more offset beams are simultaneously in focus on the sample during a scan.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: February 13, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Yevgeniy Churin
  • Patent number: 9864173
    Abstract: A spot scanning imaging system with run-time alignment includes a beam scanning device configured to linearly scan a focused beam of illumination across a sample, one or more detectors positioned to receive light from the sample, and a controller communicatively coupled to the beam scanning apparatus, the sample stage, and the one or more detectors. The controller is configured to store a first image, transmit a set of drive signals to at least one of the beam scanning device, the sample stage, or the one or more detectors, compare at least a portion of the second sampling grid to at least a portion of the first sampling grid to determine one or more offset errors, and adjust at least one drive signal in the set of drive signals based on the one or more offset errors such that the second sample grid overlaps the first sample grid.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: January 9, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Wenjian Cai, Kai Cao
  • Patent number: 9645093
    Abstract: An inspection system with selectable apodization includes a selectably configurable apodization device disposed along an optical pathway of an optical system. The apodization device includes one or more apodization elements operatively coupled to one or more actuation stages. The one or more actuation stages are configured to selectably actuate the one or more apodization elements along one or more directions. The inspection system includes a control system communicatively coupled to the one or more actuation stages. The control system is configured to selectably control an actuation state of at the one or more apodization elements so as to apply a selected apodization profile formed with the one or more apodization elements.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: May 9, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Gary Janik, Steve Cui, Rex Runyon, Dieter Wilk, Steve Short, Mikhail Haurylau, Qiang Q. Zhang, Grace Hsiu-Ling Chen, Robert M. Danen, Suwipin Martono, Shobhit Verma, Wenjian Cai, Meier Brender
  • Publication number: 20170115232
    Abstract: Disclosed are apparatus and methods for inspecting or measuring a specimen. A system comprises an illumination channel for generating and deflecting a plurality of incident beams to form a plurality of spots that scan across a segmented line comprised of a plurality of scan portions of the specimen. The system also includes one or more detection channels for sensing light emanating from a specimen in response to the incident beams directed towards such specimen and collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion. The one or more detection channels include at least one longitudinal side channel for longitudinally collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion.
    Type: Application
    Filed: January 5, 2017
    Publication date: April 27, 2017
    Applicant: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Ralph Johnson, Evegeny Churin, Wenjian Cai, Yong Mo Moon
  • Patent number: 9546962
    Abstract: Disclosed are apparatus and methods for inspecting or measuring a specimen. A system comprises an illumination channel for generating and deflecting a plurality of incident beams to form a plurality of spots that scan across a segmented line comprised of a plurality of scan portions of the specimen. The system also includes one or more detection channels for sensing light emanating from a specimen in response to the incident beams directed towards such specimen and collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion. The one or more detection channels include at least one longitudinal side channel for longitudinally collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: January 17, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Ralph Johnson, Evegeny Churin, Wenjian Cai, Yong Mo Moon
  • Publication number: 20160327493
    Abstract: A system to generate multiple beam lines in an oblique angle multi-beam spot scanning wafer inspection system includes a beam scanning device configured to scan a beam of illumination, an objective lens oriented at an oblique angle relative to the surface of a sample and with an optical axis perpendicular to a first scanning direction on the sample, and one or more optical elements positioned between the objective lens and the beam scanning device. The one or more optical elements split the beam into two or more offset beams such that the two or more offset beams are separated in a least a second direction perpendicular to the first direction. The one or more optical elements further modify the phase characteristics of the two or more offset beams such that the two or more offset beams are simultaneously in focus on the sample during a scan.
    Type: Application
    Filed: December 29, 2015
    Publication date: November 10, 2016
    Inventors: Jamie M. Sullivan, Yevgeniy Churin
  • Publication number: 20160313256
    Abstract: A spot scanning imaging system with run-time alignment includes a beam scanning device configured to linearly scan a focused beam of illumination across a sample, one or more detectors positioned to receive light from the sample, and a controller communicatively coupled to the beam scanning apparatus, the sample stage, and the one or more detectors. The controller is configured to store a first image, transmit a set of drive signals to at least one of the beam scanning device, the sample stage, or the one or more detectors, compare at least a portion of the second sampling grid to at least a portion of the first sampling grid to determine one or more offset errors, and adjust at least one drive signal in the set of drive signals based on the one or more offset errors such that the second sample grid overlaps the first sample grid.
    Type: Application
    Filed: January 22, 2016
    Publication date: October 27, 2016
    Inventors: Jamie M. Sullivan, Wenjian Cai, Kai Cao
  • Patent number: 9389166
    Abstract: Disclosed are apparatus and methods for inspecting or measuring a specimen. An incident beam is directed across a plurality of consecutive scan portions of a specimen so that an output beam profile from each scan portion is consecutively collected by a photomultiplier tube (PMT), and the scan portions include at least one or more first scan portions and a next scan portion that is scanned after the one or more first scan portions. After or while the incident beam is directed to the one or more first scan portions of the specimen, an output signal for each first scan portion is obtained based on the output beam profile that is collected by the PMT for each first scan portion. An expected output beam profile for the next scan portion is determined based on the output signal that is obtained for each one or more first scan portions.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: July 12, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Ralph C. Wolf, Grace H. Chen, Kai Cao, Jamie M. Sullivan, Paul J. Donders, Derek C. Mackay
  • Publication number: 20160054232
    Abstract: An inspection system with selectable apodization includes a selectably configurable apodization device disposed along an optical pathway of an optical system. The apodization device includes one or more apodization elements operatively coupled to one or more actuation stages. The one or more actuation stages are configured to selectably actuate the one or more apodization elements along one or more directions. The inspection system includes a control system communicatively coupled to the one or more actuation stages. The control system is configured to selectably control an actuation state of at the one or more apodization elements so as to apply a selected apodization profile formed with the one or more apodization elements.
    Type: Application
    Filed: November 2, 2015
    Publication date: February 25, 2016
    Inventors: Jamie M. Sullivan, Gary Janik, Steve Cui, Rex Runyon, Dieter Wilk, Steve Short, Mikhail Haurylau, Qiang Q. Zhang, Grace Hsiu-Ling Chen, Robert M. Danen, Suwipin Martono, Shobhit Verma, Wenjian Cai, Meier Brender
  • Patent number: 9208553
    Abstract: An inspection system comprises a beam generator module for deflecting spots across scan portions of a specimen. The system also includes detection channels for sensing light emanating from a specimen in response to an incident beam directed towards such specimen and generating a detected image for each scan portion. The system comprises a synchronization system comprising clock generator modules for generating timing signals for deflectors of the beam generator module to scan the spots across the scan portions at a specified frequency and each of the detection channels to generate the corresponding detected image at a specified sampling rate. The timing signals are generated based on a common system clock and cause the deflectors to scan the spots and the detection channels to generate a detected image at a synchronized timing so as to minimize jitter between the scan portions in the response image.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: December 8, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Kai Cao, Dennis G. Emge, Zhiqin Wang, Jamie M. Sullivan, Wenjian Cai, Henrik Nielsen
  • Patent number: 9176069
    Abstract: An inspection system with selectable apodization includes an illumination source configured to illuminate a surface of a sample, a detector configured to detect at least a portion of light emanating from the surface of the sample, the illumination source and the detector being optically coupled via an optical pathway of an optical system, a selectably configurable apodization device disposed along the optical pathway, wherein the apodization device includes one or more apodization elements operatively coupled to one or more actuation stages configured to selectably actuate the one or more apodization elements along one or more directions, and a control system communicatively coupled to the one or more actuation and configured to selectably control apodization of illumination transmitted along the optical pathway by controlling an actuation state of the one or more apodization elements.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: November 3, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Gary Janik, Steve Cui, Rex Runyon, Dieter Wilk, Steve Short, Mikhail Haurylau, Qiang Q. Zhang, Grace Hsiu-Ling Chen, Robert M. Danen, Suwipin Martono, Shobhit Verma, Wenjian Cai, Meier Brender
  • Publication number: 20150226677
    Abstract: Disclosed are apparatus and methods for inspecting or measuring a specimen. A system comprises an illumination channel for generating and deflecting a plurality of incident beams to form a plurality of spots that scan across a segmented line comprised of a plurality of scan portions of the specimen. The system also includes one or more detection channels for sensing light emanating from a specimen in response to the incident beams directed towards such specimen and collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion. The one or more detection channels include at least one longitudinal side channel for longitudinally collecting a detected image for each scan portion as each incident beam's spot is scanned over its scan portion.
    Type: Application
    Filed: February 10, 2015
    Publication date: August 13, 2015
    Applicant: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Ralph Johnson, Evegeny Churin, Wenjian Cai, Yong Mo Moon
  • Publication number: 20150170357
    Abstract: An inspection system comprises a beam generator module for deflecting spots across scan portions of a specimen. The system also includes detection channels for sensing light emanating from a specimen in response to an incident beam directed towards such specimen and generating a detected image for each scan portion. The system comprises a synchronization system comprising clock generator modules for generating timing signals for deflectors of the beam generator module to scan the spots across the scan portions at a specified frequency and each of the detection channels to generate the corresponding detected image at a specified sampling rate. The timing signals are generated based on a common system clock and cause the deflectors to scan the spots and the detection channels to generate a detected image at a synchronized timing so as to minimize jitter between the scan portions in the response image.
    Type: Application
    Filed: February 27, 2015
    Publication date: June 18, 2015
    Applicant: KLA-Tencor Corporation
    Inventors: Kai Cao, Dennis G. Emge, Zhiqin Wang, Jamie M. Sullivan, Wenjian Cai, Henrik Nielsen
  • Patent number: 8995746
    Abstract: An inspection system comprises a beam generator module for deflecting spots across scan portions of a specimen. The system also includes detection channels for sensing light emanating from a specimen in response to an incident beam directed towards such specimen and generating a detected image for each scan portion. The system comprises a synchronization system comprising clock generator modules for generating timing signals for deflectors of the beam generator module to scan the spots across the scan portions at a specified frequency and each of the detection channels to generate the corresponding detected image at a specified sampling rate. The timing signals are generated based on a common system clock and cause the deflectors to scan the spots and the detection channels to generate a detected image at a synchronized timing so as to minimize jitter between the scan portions in the response image.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: March 31, 2015
    Assignee: KLA—Tencor Corporation
    Inventors: Kai Cao, Dennis G. Emge, Zhiqin Wang, Jamie M. Sullivan, Wenjian Cai, Henrik Nielsen
  • Publication number: 20140270471
    Abstract: An inspection system comprises a beam generator module for deflecting spots across scan portions of a specimen. The system also includes detection channels for sensing light emanating from a specimen in response to an incident beam directed towards such specimen and generating a detected image for each scan portion. The system comprises a synchronization system comprising clock generator modules for generating timing signals for deflectors of the beam generator module to scan the spots across the scan portions at a specified frequency and each of the detection channels to generate the corresponding detected image at a specified sampling rate. The timing signals are generated based on a common system clock and cause the deflectors to scan the spots and the detection channels to generate a detected image at a synchronized timing so as to minimize jitter between the scan portions in the response image.
    Type: Application
    Filed: May 21, 2013
    Publication date: September 18, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: Kai Cao, Dennis G. Emge, Zhiqin Wang, Jamie M. Sullivan, Wenjian Cai, Henrik Nielsen
  • Patent number: 7012683
    Abstract: Disclosed are methods and apparatus for detecting a relatively wide dynamic range of intensity values from a beam (e.g., scattered light, reflected light, or secondary electrons) originating from a sample, such as a semiconductor wafer. In other words, the inspection system provides detected output signals having wide dynamic ranges. The detected output signals may then be analyzed to determine whether defects are present on the sample. For example, the intensity values from a target die are compared to the intensity values from a corresponding portion of a reference die, where a significant intensity difference may be defined as a defect. In a specific embodiment, an inspection system for detecting defects on a sample is disclosed. The system includes a beam generator for directing an incident beam towards a sample surface and a detector positioned to detect a detected beam originating from the sample surface in response to the incident beam.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: March 14, 2006
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Ralph C. Wolf, Eva L. Benitez, Dongsheng (Don) Chen, John D. Greene, Jamie M. Sullivan, Eric N. Vella, Khiem D. Vo
  • Patent number: 6833913
    Abstract: Disclosed are methods and apparatus for detecting a relatively wide dynamic range of intensity values from a beam (e.g., scattered light, reflected light, or secondary electrons) originating from a sample, such as a semiconductor wafer. In other words, the inspection system provides detected output signals having wide dynamic ranges. The detected output signals may then be analyzed to determine whether defects are present on the sample. For example, the intensity values from a target die are compared to the intensity values from a corresponding portion of a reference die, where a significant intensity difference may be defined as a defect. In a specific embodiment, an inspection system for detecting defects on a sample is disclosed. The system includes a beam generator for directing an incident beam towards a sample surface and a detector positioned to detect a detected beam originating from the sample surface in response to the incident beam.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: December 21, 2004
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Ralph C. Wolf, Eva L. Benitez, Dongsheng Don Chen, John D. Greene, Jamie M. Sullivan, Eric N. Vella, Khiem D. Vo
  • Patent number: 6686994
    Abstract: Disclosed are mechanisms for selectively filtering spatial portions of light emanating from a sample under inspection within an optical system. In one embodiment, a programmable spatial filter (PSF) is constructed from materials that are compatible with light in a portion of the UV wavelength range. In a specific implementation, the PSF is constructed from a UV compatible material, such as a polymer stabilized liquid crystal material. In a further aspect, the PSF also includes a pair of plates that are formed from a UV grade glass. The PSF may also include a relatively thin first and second ITO layer that results in a sheet resistance between about 100 and about 300 &OHgr; per square.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: February 3, 2004
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Dieter Wilk, Anlun Tang, Eric N. Vella, Rex Runyon, Jamie M. Sullivan
  • Publication number: 20030184739
    Abstract: Disclosed are mechanisms for selectively filtering spatial portions of light emanating from a sample under inspection within an optical system. In one embodiment, a programmable spatial filter (PSF) is constructed from materials that are compatible with light in a portion of the UV wavelength range. In a specific implementation, the PSF is constructed from a UV compatible material, such as a polymer stabilized liquid crystal material. In a further aspect, the PSF also includes a pair of plates that are formed from a UV grade glass. The PSF may also include a relatively thin first and second ITO layer that results in a sheet resistance between about 100 and about 300 &OHgr; per square.
    Type: Application
    Filed: June 4, 2002
    Publication date: October 2, 2003
    Applicant: KLA-Tencor Technologies Corporation
    Inventors: Dieter E. Wilk, Anlun Tang, Eric N. Vella, J. Rex Runyon, Jamie M. Sullivan