Patents by Inventor Jamison Go

Jamison Go has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190344505
    Abstract: According to some aspects, a de-powdering subsystem for an additive fabrication system is described. The de-powdering subsystem may comprise a bath subsystem. The bath subsystem may comprise a reservoir configured to contain a liquid and to accept objects to be de-powdered into the liquid, and an agitation facility configured to cause currents within the liquid. The agitator facility may be at least one of (i) a pump configured to circulate the liquid within the reservoir, (ii) a heating element configured to generate convection currents in the liquid, and (iii) a stirrer driven through a linkage to a motor. The bath subsystem may comprise at least one ultrasonic transducer configured to apply ultrasonic vibrations to the liquid within the reservoir.
    Type: Application
    Filed: June 28, 2019
    Publication date: November 14, 2019
    Applicant: Desktop Metal, Inc.
    Inventors: Daniel Sachs, Jamison Go, Robert J. Nick
  • Patent number: 10406751
    Abstract: A system for separating objects within a stacked powder print bed of nested objects comprises a build box configured to contain the powder print bed. The build box has a build box top and a build box floor. The system further includes an elongated aperture formed in a side wall of the build box, and a de-powdering subsystem configured to mechanically and electrically engage the build box. A separating blade associated with the de-powdering subsystem is configured to be inserted through the elongated aperture and into the powder print bed between a top-most print bed layer of the nested objects and a second print bed layer directly below and contiguous with the top-most layer, thereby forming an isolated powder print bed between the separating blade and the build box top. The unbound powder may be agitated by various techniques and subsequently removed from the objects.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: September 10, 2019
    Assignee: Desktop Metal, Inc.
    Inventors: Ricardo Fulop, Robert Michael Shydo, Jonah Samuel Myerberg, Charles Edward Martin, Justin Cumming, Paul Hoisington, Emanuel M. Sachs, George Hudelson, Daniel Sachs, Jamison Go, Eric Wong, Alexander K. McCalmont
  • Publication number: 20180297284
    Abstract: A system for separating objects within a stacked powder print bed of nested objects comprises a build box configured to contain the powder print bed. The build box has a build box top and a build box floor. The system further includes an elongated aperture formed in a side wall of the build box, and a de-powdering subsystem configured to mechanically and electrically engage the build box. A separating blade associated with the de-powdering subsystem is configured to be inserted through the elongated aperture and into the powder print bed between a top-most print bed layer of the nested objects and a second print bed layer directly below and contiguous with the top-most layer, thereby forming an isolated powder print bed between the separating blade and the build box top. The unbound powder may be agitated by various techniques and subsequently removed from the objects.
    Type: Application
    Filed: February 9, 2018
    Publication date: October 18, 2018
    Inventors: Ricardo Fulop, Robert Michael Shydo, JR., Jonah Samuel Myerberg, Charles Edward Martin, Justin Cumming, Paul Hoisington, Emanuel M. Sachs, George Hudelson, Daniel Sachs, Jamison Go, Eric Wong, Alexander K. McCalmont
  • Publication number: 20180297278
    Abstract: A build box associated with a powder bed fabrication system may comprise a housing defining a housing cavity, and a powder print bed disposed within the housing cavity. The powder print bed may be characterized by state information. The build box may further comprise a medium configured to facilitate access to the state information, and a coupling interface for removably engaging the build box with at least one subsystem of the powder bed fabrication system. The state information may comprise one or more state information elements of object identification, object location, current processing state, next subsystem processing step, previous subsystem processing step, object model information, object material composition, and current powder print bed temperature profile. The medium may comprise a memory device coupled with a transceiver. The medium may alternatively comprise an RFID device, or an optically perceivable designator, such as a bar code or QR code.
    Type: Application
    Filed: March 15, 2018
    Publication date: October 18, 2018
    Inventors: Ricardo Fulop, Jonah Samuel Myerberg, Charles Edward Martin, Justin Cumming, Robert Michael Shydo, JR., George Hudelson, Jamison Go, Andrew E. Kuklinski, Michael Daniel Santorella, Alexander Nicholas LeGendre
  • Patent number: 9883685
    Abstract: Fused deposition model printer system. The system prints cold slurry substances and includes a source of a cold slurry substance with a print platform supported for at least three axes of motion under computer control. An extruder head system including a nozzle extrudes a stream of the cold slurry substance from the source onto the print platform, the extruder head including a heater. A cryogen line is provided having a perforated section for surrounding the continuous stream of the cold slurry substance to spray a cryogen onto the cold slurry substance to cool it upon extrusion. A chilled compartment or freezer is provided in which the print platform, extruder head system, and cryogen line are contained to maintain those components at a selected temperature whereby the cold slurry substance is printed to form a desired three dimensional shape.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: February 6, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Kristine A. Bunker, Jamison Go, Anastasios John Hart, Kyle N. Hounsell, Donghyun Kim
  • Publication number: 20170151704
    Abstract: Printing devices and methods are provided that utilize high throughput extrusion to generate a printer material, such as a three-dimensional object. High-throughput extrusion systems in accordance with the present disclosure volumetrically pre-heat an extruded filament to a desired pre-heat temperature, and then either maintain or heat the extruded filament to a desired melt temperature prior to having the filament extruded out of the system and onto a surface, such as a build platform. By pre-heating the filament prior to heating it to the temperature at which it is excluded, it helps increase the throughput of the system. Likewise, by doing the heating volumetrically, it further helps increase the throughput of the system. Various embodiments of devices and methods typically used for printing in conjunction with the disclosed high throughput systems are also provided for in the present disclosure.
    Type: Application
    Filed: September 9, 2016
    Publication date: June 1, 2017
    Inventors: Jamison Go, Anastasios John Hart
  • Publication number: 20160324206
    Abstract: Fused deposition model printer system. The system prints cold slurry substances and includes a source of a cold slurry substance with a print platform supported for at least three axes of motion under computer control. An extruder head system including a nozzle extrudes a stream of the cold slurry substance from the source onto the print platform, the extruder head including a heater. A cryogen line is provided having a perforated section for surrounding the continuous stream of the cold slurry substance to spray a cryogen onto the cold slurry substance to cool it upon extrusion. A chilled compartment or freezer is provided in which the print platform, extruder head system, and cryogen line are contained to maintain those components at a selected temperature whereby the cold slurry substance is printed to form a desired three dimensional shape.
    Type: Application
    Filed: May 8, 2015
    Publication date: November 10, 2016
    Inventors: Kristine A. Bunker, Jamison Go, Anastasios John Hart, Kyle N. Hounsell, Donghyun Kim