Patents by Inventor Jan Dlabal

Jan Dlabal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11544498
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network using consistency measures. One of the methods includes processing a particular training example from a mediator training data set using a first neural network to generate a first output for a first machine learning task; processing the particular training example in the mediator training data set using each of one or more second neural networks, wherein each second neural network is configured to generate a second output for a respective second machine learning task; determining, for each second machine learning task, a consistency target output for the first machine learning task; determining, for each second machine learning task, an error between the first output and the consistency target output corresponding to the second machine learning task; and generating a parameter update for the first neural network from the determined errors.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: January 3, 2023
    Assignee: Google LLC
    Inventors: Ariel Gordon, Soeren Pirk, Anelia Angelova, Vincent Michael Casser, Yao Lu, Anthony Brohan, Zhao Chen, Jan Dlabal
  • Publication number: 20210279511
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a neural network using consistency measures. One of the methods includes processing a particular training example from a mediator training data set using a first neural network to generate a first output for a first machine learning task; processing the particular training example in the mediator training data set using each of one or more second neural networks, wherein each second neural network is configured to generate a second output for a respective second machine learning task; determining, for each second machine learning task, a consistency target output for the first machine learning task; determining, for each second machine learning task, an error between the first output and the consistency target output corresponding to the second machine learning task; and generating a parameter update for the first neural network from the determined errors.
    Type: Application
    Filed: March 5, 2021
    Publication date: September 9, 2021
    Inventors: Ariel Gordon, Soeren Pirk, Anelia Angelova, Vincent Michael Casser, Yao Lu, Anthony Brohan, Zhao Chen, Jan Dlabal