Patents by Inventor Jan-Eric Ahlfors

Jan-Eric Ahlfors has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240003927
    Abstract: A system for automated processing of a plurality of batches, each batch being derived from one biological sample, the system comprising an enclosure which can be closed and sterilized, each batch of the plurality of batches comprising one or more cell processing container; a plurality of reagent containers for holding reagents within the enclosure; at least one reagent dispenser within the enclosure for dispensing reagents during said automated processing; a quality control system within the enclosure for analyzing at least one characteristic of a batch during said automated processing; a harvester within the enclosure for harvesting batches; a robotic system within the enclosure, configured for transporting cell processing containers, decapping or otherwise opening cell processing containers, pipetting reagents or liquids from cell processing containers, and aspirating liquids from cell processing containers, during said automated processing; a tracker for electronically tracking the plurality of batches aft
    Type: Application
    Filed: September 14, 2023
    Publication date: January 4, 2024
    Inventor: Jan-Eric Ahlfors
  • Patent number: 11796552
    Abstract: A system for automated processing of a plurality of batches, each batch being derived from one biological sample, the system comprising an enclosure which can be closed and sterilized, each batch of the plurality of batches comprising one or more cell processing container; a plurality of reagent containers for holding reagents within the enclosure; at least one reagent dispenser within the enclosure for dispensing reagents during said automated processing; a quality control system within the enclosure for analyzing at least one characteristic of a batch during said automated processing; a harvester within the enclosure for harvesting batches; a robotic system within the enclosure, configured for transporting cell processing containers, decapping or otherwise opening cell processing containers, pipetting reagents or liquids from cell processing containers, and aspirating liquids from cell processing containers, during said automated processing; a tracker for electronically tracking the plurality of batches aft
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: October 24, 2023
    Assignee: Genesis Technologies Limited
    Inventor: Jan-Eric Ahlfors
  • Patent number: 11795439
    Abstract: A method of obtaining a pancreatic multipotent or unipotent cell including providing a cell of a first type which is not a pancreatic multipotent or unipotent cell; contacting the cell of a first type with an agent capable of remodeling the chromatin and/or DNA of the cell; transiently increasing expression of at least one pancreatic multipotent or unipotent gene regulator in the cell of a first type, to a level at which the at least one pancreatic multipotent or unipotent gene regulator is capable of driving transformation of the cell of a first type into the pancreatic multipotent or unipotent cell; and placing or maintaining the cell in a pancreatic cell culture medium and maintaining intracellular levels of the at least one pancreatic multipotent or unipotent gene regulator for a sufficient period of time to allow a pancreatic multipotent or unipotent cell to be obtained.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: October 24, 2023
    Assignee: GENESIS TECHNOLOGIES LIMITED
    Inventors: Jan-Eric Ahlfors, Rouwayda El-Ayoubi
  • Publication number: 20230227785
    Abstract: A method of obtaining a pluripotent-like multipotent cell, including providing a cell of a first type which is not a pluripotent-like multipotent cell; contacting the cell of a first type with an agent capable of remodeling the chromatin and/or DNA of the cell; transiently increasing expression of at least one pluripotent gene regulator in the cell of a first type, to a level at which the at least one pluripotent gene regulator is capable of driving transformation of the cell of a first type into the pluripotent-like multipotent cell; and placing or maintaining the cell in a differentiation medium and maintaining intracellular levels of the at least one pluripotent gene regulator for a sufficient period of time to allow a stable pluripotent-like multipotent cell to be obtained; wherein the pluripotent-like multipotent cell so obtained does not exhibit teratoma formation in vivo.
    Type: Application
    Filed: March 22, 2023
    Publication date: July 20, 2023
    Inventors: Jan-Eric Ahlfors, Rouwayda El-Ayoubi
  • Publication number: 20220003796
    Abstract: A system for automated processing of a plurality of batches, each batch being derived from one biological sample, the system comprising an enclosure which can be closed and sterilized, each batch of the plurality of batches comprising one or more cell processing container; a plurality of reagent containers for holding reagents within the enclosure; at least one reagent dispenser within the enclosure for dispensing reagents during said automated processing; a quality control system within the enclosure for analyzing at least one characteristic of a batch during said automated processing; a harvester within the enclosure for harvesting batches; a robotic system within the enclosure, configured for transporting cell processing containers, decapping or otherwise opening cell processing containers, pipetting reagents or liquids from cell processing containers, and aspirating liquids from cell processing containers, during said automated processing; a tracker for electronically tracking the plurality of batches aft
    Type: Application
    Filed: September 17, 2021
    Publication date: January 6, 2022
    Inventor: Jan-Eric Ahlfors
  • Patent number: 11156627
    Abstract: Systems and methods for automated cell processing of biological samples, such as cells for use in cell therapy and regenerative medicine. Systems for automated processing of batches derived from biological samples comprise: a closed and sterile enclosure; a plurality of reagent containers; at least one reagent dispenser; a quality control module for analyzing at least one characteristic of a batch; a harvesting module; a robotic module; and a control unit (CU) communicatively coupled to the at least one reagent dispenser, the quality control module, the harvesting module and the robotic module for controlling the automatic processing of batches. The automatic processing may be executable without handling by a human operator. The system may be configured to automatically process the plurality of batches without cross-contamination between batches, e.g., under GMP conditions.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: October 26, 2021
    Assignee: GENESIS TECHNOLOGIES LIMITED
    Inventor: Jan-Eric Ahlfors
  • Patent number: 11125767
    Abstract: A system for automated processing of a plurality of batches, each batch being derived from one biological sample, the system comprising an enclosure which can be closed and sterilized, each batch of the plurality of batches comprising one or more cell processing container; a plurality of reagent containers for holding reagents within the enclosure; at least one reagent dispenser within the enclosure for dispensing reagents during said automated processing; a quality control system within the enclosure for analyzing at least one characteristic of a batch during said automated processing; a harvester within the enclosure for harvesting batches; a robotic system within the enclosure, configured for transporting cell processing containers, decapping or otherwise opening cell processing containers, pipetting reagents or liquids from cell processing containers, and aspirating liquids from cell processing containers, during said automated processing; a tracker for electronically tracking the plurality of batches aft
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: September 21, 2021
    Assignee: Genesis Technologies Limited
    Inventor: Jan-Eric Ahlfors
  • Patent number: 10975119
    Abstract: The present invention relates to compounds of Formula I, II, IA-VA, IVA1-IVA5, IIIA1-IIIA5 and their pharmaceutical uses. Particular aspects of the invention relate to the use of those compounds for the selective inhibition of one or more cysteine proteases. Also described are methods where the compounds of Formula I, II, IA-VA, IVA1-IVA5, IIIA1-IIIA5 are used in the prevention and/or treatment of various diseases and conditions in subjects, including cysteine protease-mediated diseases and/or caspase-mediated diseases such as sepsis, myocardial infarction, cancer, tissue atrophy, ischemia, ischemic stroke, spinal cord injury (SCI), traumatic brain injury (TBI) and neurodegenerative diseases such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, and Huntington's disease.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: April 13, 2021
    Assignee: Genesis Technologies Limited
    Inventors: Jan-Eric Ahlfors, Khalid Mekouar
  • Publication number: 20200263140
    Abstract: A method of obtaining a pancreatic multipotent or unipotent cell including providing a cell of a first type which is not a pancreatic multipotent or unipotent cell; contacting the cell of a first type with an agent capable of remodeling the chromatin and/or DNA of the cell; transiently increasing expression of at least one pancreatic multipotent or unipotent gene regulator in the cell of a first type, to a level at which the at least one pancreatic multipotent or unipotent gene regulator is capable of driving transformation of the cell of a first type into the pancreatic multipotent or unipotent cell; and placing or maintaining the cell in a pancreatic cell culture medium and maintaining intracellular levels of the at least one pancreatic multipotent or unipotent gene regulator for a sufficient period of time to allow a pancreatic multipotent or unipotent cell to be obtained.
    Type: Application
    Filed: January 24, 2020
    Publication date: August 20, 2020
    Inventors: Jan-Eric Ahlfors, Rouwayda El-Ayoubi
  • Publication number: 20200165570
    Abstract: A method of obtaining a pluripotent-like multipotent cell, including providing a cell of a first type which is not a pluripotent-like multipotent cell; contacting the cell of a first type with an agent capable of remodeling the chromatin and/or DNA of the cell; transiently increasing expression of at least one pluripotent gene regulator in the cell of a first type, to a level at which the at least one pluripotent gene regulator is capable of driving transformation of the cell of a first type into the pluripotent-like multipotent cell; and placing or maintaining the cell in a differentiation medium and maintaining intracellular levels of the at least one pluripotent gene regulator for a sufficient period of time to allow a stable pluripotent-like multipotent cell to be obtained; wherein the pluripotent-like multipotent cell so obtained does not exhibit teratoma formation in vivo.
    Type: Application
    Filed: January 24, 2020
    Publication date: May 28, 2020
    Inventors: Jan-Eric Ahlfors, Rouwayda El-Ayoubi
  • Publication number: 20200141961
    Abstract: A system for automated processing of a plurality of batches, each batch being derived from one biological sample, the system comprising an enclosure which can be closed and sterilized, each batch of the plurality of batches comprising one or more cell processing container; a plurality of reagent containers for holding reagents within the enclosure; at least one reagent dispenser within the enclosure for dispensing reagents during said automated processing; a quality control system within the enclosure for analyzing at least one characteristic of a batch during said automated processing; a harvester within the enclosure for harvesting batches; a robotic system within the enclosure, configured for transporting cell processing containers, decapping or otherwise opening cell processing containers, pipetting reagents or liquids from cell processing containers, and aspirating liquids from cell processing containers, during said automated processing; a tracker for electronically tracking the plurality of batches aft
    Type: Application
    Filed: November 6, 2019
    Publication date: May 7, 2020
    Inventor: Jan-Eric Ahlfors
  • Patent number: 10563176
    Abstract: An in vitro human cardiac multi potent or unipotent cell that has the ability to proliferate; may be maintained in standard cardiac stem cell media; can differentiate to a progenitor, precursor, or somatic cell; has the characteristics of a cardiac stem cell, a cardiac precursor cell, or a cardiac progenitor cell; does not exhibit uncontrolled growth, teratoma formation, or tumor formation in vivo; expresses one or more markers of a multipotent, unipotent or somatic cell not characteristic of a cardiac stem cell, a cardiac precursor cell, or a cardiac progenitor cell; and is derived from the reprogramming of a somatic cell, a progenitor cell or a stem cell that exhibits at least a transient increase in intracellular levels of at least one reprogramming agent; wherein the cell comprises at least one transiently expressed polypeptide or an expression vector.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: February 18, 2020
    Assignee: Genesis Technologies Limited
    Inventors: Jan-Eric Ahlfors, Rouwayda El-Ayoubi
  • Patent number: 10557123
    Abstract: A method of obtaining a neural multipotent, unipotent or somatic cell, including: i) providing a cell of a first type which is not a neural multipotent, unipotent or somatic cell; ii) increasing expression of at least one neural multipotent or unipotent gene regulator in the cell of a first type, to a level at which the at least one neural multipotent or unipotent gene regulator is capable of driving transformation of the cell of a first type into the neural multipotent, unipotent or somatic cell, wherein the at least one multipotent or unipotent gene regulator is Musashi1 (Msi1), Neurogenin 2 (Ngn2), or both Msi1 and Ngn2; and iii) placing or maintaining the cell in a neural cell culture medium and maintaining sufficient intracellular levels of the at least one multipotent or unipotent gene regulator for a sufficient period of time to allow a stable neural multipotent, unipotent or somatic cell to be obtained.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: February 11, 2020
    Assignee: Genesis Technologies Limited
    Inventors: Jan-Eric Ahlfors, Rouwayda El-Ayoubi
  • Publication number: 20200025782
    Abstract: Systems and methods for automated cell processing of biological samples, such as cells for use in cell therapy and regenerative medicine. Systems for automated processing of batches derived from biological samples comprise: a closed and sterile enclosure; a plurality of reagent containers; at least one reagent dispenser; a quality control module for analyzing at least one characteristic of a batch; a harvesting module; a robotic module; and a control unit (CU) communicatively coupled to the at least one reagent dispenser, the quality control module, the harvesting module and the robotic module for controlling the automatic processing of batches. The automatic processing may be executable without handling by a human operator. The system may be configured to automatically process the plurality of batches without cross-contamination between batches, e.g., under GMP conditions.
    Type: Application
    Filed: June 20, 2017
    Publication date: January 23, 2020
    Inventor: Jan-Eric Ahlfors
  • Publication number: 20190330603
    Abstract: Methods and systems for targeted genomic modification within a target genome region (TGR) in a mammalian cell. In particular, there is provided a CRISPR/Cas9 system comprising: one or more guide RNA (gRNA) comprising a CRISPR RNA (crRNA) and a trans-activating crRNA (tracrRNA) linked together, the gRNA binding with sequence specificity to a target DNA sequence in the TGR that is adjacent to a PAM sequence; a Cas9n protein; and an optional repair template for homology-directed repair (HDR). The mammalian cell may be contacted with the CRISPR/Cas9 system such that the TGR is modified, forming a modified-TGR, the one or more gRNA and/or the optional repair template selected such that the modified-TGR cannot be further modified by the CRISPR/Cas9 system. A third gRNA may be selected such that the CRISPR/Cas9 system can only bind and/or modify the third target DNA sequence if the TGR comprises a disease-causing modification.
    Type: Application
    Filed: June 16, 2017
    Publication date: October 31, 2019
    Inventors: Jan-Eric AHLFORS, Sarathi MANI
  • Patent number: 10272029
    Abstract: The present invention provides methods and compositions useful in the regeneration of damaged, lost and/or degenerated tissue in humans and animals. In certain embodiments, the present invention provides an acellular bioabsorbable tissue regeneration matrix, methods of making such a matrix, and methods of using such a matrix for the regeneration of damaged, lost and/or degenerated tissue. In certain embodiments, methods and compositions of the present invention are useful in the treatment of damaged, lost and/or degenerated nerve tissue.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: April 30, 2019
    Assignee: GENESIS TECHNOLOGIES LIMITED
    Inventor: Jan-Eric Ahlfors
  • Patent number: 10260046
    Abstract: A method of obtaining a cardiac multipotent or unipotent cell, comprising: i) providing a cell of a first type which is not a cardiac multipotent or unipotent cell; ii) introducing into the cell of a first type an agent capable of remodeling the chromatin and/or DNA of the cell, wherein the agent capable of remodeling the chromatin and/or DNA is a histone acetylator, an inhibitor of histone deacetylation, a DNA demethylator, and/or a chemical inhibitor of DNA methylation; iii) introducing into the cell of a first type a reprogramming polypeptide and/or a polynucleotide encoding said reprogramming polypeptide, wherein the reprogramming polypeptide comprises Mesp1, Brachyury (T), Nkx2.5, and/or Tbx5; and iv) placing or maintaining the cell in a cardiac cell culture medium and maintaining intracellular levels of the reprogramming polypeptide or the polynucleotide encoding the reprogramming polypeptide for a sufficient period of time to allow a cardiac multipotent or unipotent cell to be obtained.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: April 16, 2019
    Assignee: Genesis Technologies Limited
    Inventors: Jan-Eric Ahlfors, Rouwayda El-Ayoubi
  • Publication number: 20190085294
    Abstract: A method of obtaining a neural multipotent, unipotent or somatic cell, including: i) providing a cell of a first type which is not a neural multipotent, unipotent or somatic cell; ii) increasing expression of at least one neural multipotent or unipotent gene regulator in the cell of a first type, to a level at which the at least one neural multipotent or unipotent gene regulator is capable of driving transformation of the cell of a first type into the neural multipotent, unipotent or somatic cell, wherein the at least one multipotent or unipotent gene regulator is Musashi1 (Msi1), Neurogenin 2 (Ngn2), or both Msi1 and Ngn2; and iii) placing or maintaining the cell in a neural cell culture medium and maintaining sufficient intracellular levels of the at least one multipotent or unipotent gene regulator for a sufficient period of time to allow a stable neural multipotent, unipotent or somatic cell to be obtained.
    Type: Application
    Filed: November 19, 2018
    Publication date: March 21, 2019
    Inventors: Jan-Eric Ahlfors, Rouwayda El-Ayoubi
  • Publication number: 20190024056
    Abstract: Described herein are reprogrammed cells, and methods for cell dedifferentiation, transformation and eukaryotic cell reprogramming. Also described are cells, cell lines, and tissues that can be transplanted in a patient after steps of in vitro dedifferentiation and in vitro reprogramming. In particular embodiments the cells are Stem-Like Cells (SLCs), including Neural Stem-Like Cells (NSLCs), Cardiac Stem-Like Cells (CSLC), Hematopoietic Stem-Like Cells (HSLC), Pancreatic Progenitor-Like Cells, and Mesendoderm-like Cells. Also described are methods for generating these cells from human somatic cells and other types of cells. Also provided are compositions and methods of using of the cells so generated in human therapy and in other areas.
    Type: Application
    Filed: September 7, 2018
    Publication date: January 24, 2019
    Inventors: Jan-Eric Ahlfors, Rouwayda El-Ayoubi
  • Patent number: 10167313
    Abstract: The present invention relates to compounds of Formula I, IA, II, IIA, III, or IIIA and their pharmaceutical uses. Particular aspects of the invention relate to the use of those compounds for the selective inhibition of one or more caspases. Also described are methods where the compounds of Formula I, IA, II, IIA, III, or IIIA are used in the prevention and/or treatment of various diseases and conditions in subjects, including caspase-mediated diseases such as sepsis, myocardial infarction, ischemic stroke, spinal cord injury (SCI), traumatic brain injury (TBI) and neurodegenerative disease (e.g. multiple sclerosis (MS) and Alzheimer's, Parkinson's, and Huntington's diseases).
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: January 1, 2019
    Assignee: Genesis Technologies Limited
    Inventors: Jan-Eric Ahlfors, Khalid Mekouar