Patents by Inventor Jan Henk Kamps

Jan Henk Kamps has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7557175
    Abstract: Disclosed herein is a poly(carbonate-co-urea-co-ester) copolymer comprising incorporated urea compound, dihydroxy compound and diacid compound residues. Also disclosed herein is a poly(carbonate-co-urea) copolymer comprising incorporated urea compound and dihydroxy compound residues.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: July 7, 2009
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Jan Henk Kamps, Edward Kung, Jan-Pleun Lens
  • Patent number: 7541420
    Abstract: A method for preparing a molded article includes the steps of (a) obtaining a polycarbonate resin and (b) molding the polycarbonate resin. The polycarbonate resin is made by a transesterification reaction using an activated diaryl carbonate such that the polycarbonate is susceptible to the formation of internal ester linkages (IEL). The method occurs with the proviso that the polycarbonate resin, the molding conditions or both are selected to control the amount of IEL formed during the molding process to a level of less than 0.4 mol %.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: June 2, 2009
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Sjef Berndsen, Hans Peter Brack, Bernd Jansen, Jan Henk Kamps, Edward Kung, Daniel Lowery, Patrick Joseph McCloskey, Paul Michael Smigelski, Jr., Dennis Willemse
  • Publication number: 20090105393
    Abstract: Disclosed herein is an isosorbide-based polycarbonate polymer comprising: an isosorbide unit, an aliphatic unit derived from a C14-44 aliphatic diacid, C14-44 aliphatic diol, or combination of these; and optionally, an additional unit different from the isosorbide and aliphatic units, wherein the isosorbide unit, aliphatic unit, and additional unit are each carbonate, or a combination of carbonate and ester units. Also disclosed are a thermoplastic composition and an article comprising the isosorbide-based polycarbonate.
    Type: Application
    Filed: October 18, 2007
    Publication date: April 23, 2009
    Inventors: Bernardus Johannes Jansen, Jan Henk Kamps, Edward Kung, Hans Looij, Lina Prada, Wilhelmus Johannes Steendam
  • Publication number: 20090105443
    Abstract: A method of making a polycarbonate is described. The method comprises melt reacting an ester-substituted diaryl carbonate and a multifunctional compound of the formula: in the presence of catalyst to form an oligomer comprising less than 2,000 ppm of an ester-linked terminal group, and melt polymerizing the oligomer to form a polycarbonate. Use of specific reaction conditions produces a polycarbonate having an Mw of greater than or equal to 25,000 g/mol as determined by gel-permeation chromatography relative to polystyrene standards. Polycarbonates comprising units derived from the multifunctional compound, including homopolycarbonates, aliphatic copolycarbonates further comprising units derived from an aromatic dihydroxy compound, and aliphatic polycarbonate-polyesters, are also disclosed, as are a thermoplastic composition and an article including the disclosed polycarbonates.
    Type: Application
    Filed: May 21, 2008
    Publication date: April 23, 2009
    Inventors: Hans-Peter BRACK, Maarten Antoon Jan CAMPMAN, Jorge GARCIA AGUDO, Jan Henk KAMPS, Hans LOOIJ, Fernando OLMEDO FERNANDEZ, Dennis James Patrick Maria WILLEMSE
  • Publication number: 20090105438
    Abstract: Disclosed herein is a polycarbonate comprising a terminal olefin group of the formula wherein R1 is a C1-C40 hydrocarbon that can be unsubstituted or substituted with a halogen, olefin, ether, ketone, or C4-C30 polyoxyalkylene functionality in which the alkylene groups contain 2 to 6 carbon atoms, R2 to R4 are each independently a hydrogen or a C1-C40 hydrocarbon that can be unsubstituted or substituted with a halogen, olefin, ether, ketone, or a C4-C30 polyoxyalkylene functionality in which the alkylene groups contain 2 to 6 carbon atoms, and optionally wherein any two of R1 to R4 together form a monocyclic, bicyclic, or tricyclic ring system optionally substituted with a heteroatom in each ring.
    Type: Application
    Filed: October 19, 2007
    Publication date: April 23, 2009
    Inventors: Hans-Peter Brack, Bernard Jansen, Jan Henk Kamps, Hans Looij, Han Vermeulen, Dennis Willemse
  • Patent number: 7501481
    Abstract: A method is provided for reducing the color generated during production of copolycarbonate that includes quinone-type residues. The method includes the steps preparing a reaction mixture containing precursors of monomer residues, selecting a catalyst, introduction strategy and adding catalysts according to the strategy. The strategy is sufficient to result in a product copolycarbonate with improved color. The method further includes the steps of introducing the reaction mixture to a series of process units and allowing the reaction mixture to polymerize thereby forming a copolycarbonate. The resulting copolycarbonate has improved color as compared to a copolycarbonate formed in a process without the steps of selecting a catalyst introduction strategy and introducing catalysts according to the selected strategy.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: March 10, 2009
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Jan Henk Kamps, Jan Pleun Lens
  • Patent number: 7498400
    Abstract: Polycarbonates incorporating terminal carbonate groups derived from ester-substituted activated carbonates in a transesterification process have unfavorable properties with respect to color, hydrolytic stability and thermal stability, particularly when the polycarbonate containing such end groups is molded. The number of activated carbonate end groups formed during the melt transesterification formation of polycarbonate can be reduced by reacting a dihydroxy compound with an activated diaryl carbonate in the presence of an esterification catalyst to produce a polycarbonate, in the presence of a monohydroxy chainstopper such as para-cumyl phenol in an amount that results in 35 to 65 mol % of the end groups being derived from the monohydroxy chainstopper. Suitably, the reactants are provided such that the molar ratio of activated diaryl carbonate to the total of dihydroxy compound plus ½ the chainstopping reagent that is less than 1.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: March 3, 2009
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Bernd Jansen, Jan Henk Kamps, Edward Kung, Patrick Joseph McCloskey, Paul Michael Smigelski, Jr.
  • Patent number: 7482423
    Abstract: Polycarbonates incorporating terminal carbonate groups derived from ester-substituted activated carbonates, for example terminal methyl salicyl carbonate (TMSC) derived from the use of BMSC as the activated carbonate in a transesterification process, have unfavorable properties with respect to color, hydrolytic stability and thermal stability, particularly when the polycarbonate containing such end groups is molded. The number of activated carbonate end groups formed during the melt transesterification formation of polycarbonate can be reduced, however, without sacrificing the benefits of using an activated diaryl carbonate, and without requiring a separate reaction or additional additives by reacting a dihydroxy compound with an activated diaryl carbonate in the presence of an esterification catalyst to produce a polycarbonate, wherein the molar ratio of activated diaryl carbonate to dihydroxy compound is less than 1 when expressed to at least three decimal places, for example 0.996 or less.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: January 27, 2009
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Bernd Jansen, Jan Henk Kamps, Edward Kung, Patrick Joseph McCloskey, Paul Michael Smigelski, Jr.
  • Publication number: 20080275209
    Abstract: Disclosed herein is a process to prepare a poly(carbonate-co-urea) copolymer comprising reacting in the melt: (a) a dihydroxy reaction component comprising a dihydroxy compound, (b) a diaryl carbonate reaction component comprising a diaryl carbonate, (c) a urea reaction component comprising a urea compound in the presence of (d) a transesterification catalyst during at least part of the reaction and removing a phenolic byproduct to produce a poly(carbonate-co-urea) copolymer, wherein the urea and dihydroxy compounds are reacted in a molar ratio: (total moles of urea compound)/((total moles of urea compound)+(total moles of dihydroxy compound)) of less than or equal to 0.5.
    Type: Application
    Filed: May 3, 2007
    Publication date: November 6, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jan Henk Kamps, Edward Kung, Jan-Pleun Lens
  • Publication number: 20080275206
    Abstract: Disclosed herein is a poly(carbonate-co-urea-co-ester) copolymer comprising incorporated urea compound, dihydroxy compound and diacid compound residues. Also disclosed herein is a poly(carbonate-co-urea) copolymer comprising incorporated urea compound and dihydroxy compound residues.
    Type: Application
    Filed: May 3, 2007
    Publication date: November 6, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jan Henk Kamps, Edward Kung, Jan-Pleun Lens
  • Publication number: 20080130129
    Abstract: The present invention provides methods for controlling the optical properties of a light transmissive article. The method includes identifying a target window in an Abbe diagram comprising reference polymeric materials. The method further includes selecting a first polymeric material from the reference polymeric materials and compounding the first polymeric material with a stable UV chromophore to provide a first polymer composition. The method further includes transforming the first polymer composition to provide the light transmissive article, wherein the light transmissive article has an Abbe number and a refractive index which falls within the target window. Light transmissive articles prepared using the above methods are also provided.
    Type: Application
    Filed: December 5, 2006
    Publication date: June 5, 2008
    Applicant: General Electric Company
    Inventors: Eugene Pauling Boden, Brian Lee Lawrence, Steven James Montgomery, Shreyas Chakravarti, Peter Hendrikus Vollenberg, Edward Kung, Jan Henk Kamps, Lina Prada, John Brian McDermott, Michael Teruki Takemori
  • Patent number: 7381786
    Abstract: Disclosed herein is a process for preparing a polymer comprising structural units derived from polycyclic dihydroxy compound having Formula (I), wherein R1 is selected from the group consisting of a cyano functionality, a nitro functionality, an aliphatic functionality having 1 to 10 carbons, an aliphatic ester functionality having 2 to 10 carbons, a cycloaliphatic ester functionality having 4 to 10 carbons and an aromatic ester functionality having 4 to 10 carbons; R2 is selected from the group consisting of a cyano functionality, a nitro functionality, an aliphatic ester functionality having 2 to 10 carbons, a cycloaliphatic ester functionality having 4 to 10 carbons and an aromatic ester functionality having 4 to 10 carbons; and each R3 and R4, at each occurrence, can be the same or different and are independently at each occurrence an aliphatic functionality having 1 to 10 carbons or a cycloaliphatic functionality having 3 to 10 carbons, “n” is an integer having a value 0 to 4 and “m” is an integer ha
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: June 3, 2008
    Assignee: General Electric Company
    Inventors: Jan Henk Kamps, Jan-Pleun Lens, James A. Mahood, Arakali Srinivasarao Radhakrishna, T. Tilak Raj, Ravindra Vikram Singh
  • Publication number: 20080097071
    Abstract: The present invention relates to polycarbonate having repeat units derived from tert-butylhydroquinone (TBHQ). It has herein been found that polycarbonate having repeat units derived from TBHQ has superior properties as compared to polycarbonate having repeat units derived from other dihydroxy (hydroquinone-type) compounds. In one embodiment the present invention provides a polycarbonate having repeat units derived from tert-butylhydroquinone. The polycarbonate has a Mw (PC) of at least 9,000 g/mol.
    Type: Application
    Filed: October 19, 2007
    Publication date: April 24, 2008
    Applicant: SABIC INNOVATIVE PLASTICS IP BV
    Inventors: Jan Henk Kamps, Edward Kung, Brian Mullen
  • Publication number: 20080076902
    Abstract: A method is provided for reducing the color generated during production of copolycarbonate that includes quinone-type residues. The method includes the steps preparing a reaction mixture containing precursors of monomer residues, selecting a catalyst, introduction strategy and adding catalysts according to the strategy. The strategy is sufficient to result in a product copolycarbonate with improved color. The method further includes the steps of introducing the reaction mixture to a series of process units and allowing the reaction mixture to polymerize thereby forming a copolycarbonate. The resulting copolycarbonate has improved color as compared to a copolycarbonate formed in a process without the steps of selecting a catalyst introduction strategy and introducing catalysts according to the selected strategy.
    Type: Application
    Filed: January 20, 2005
    Publication date: March 27, 2008
    Inventors: Jan Henk Kamps, Jan Pleun Lens
  • Patent number: 7326763
    Abstract: A polymer comprises structural units derived from a polycyclic dihydroxy compound of Formula (I) wherein R1 is selected from the group consisting of a cyano functionality, a nitro functionality, an aliphatic functionality having 1 to 10 carbons, an aliphatic ester functionality having 2 to 10 carbons, a cycloaliphatic ester functionality having 4 to 10 carbons and an aromatic ester functionality having 4 to 10 carbons; R2 is selected from the group consisting of a cyano functionality, a nitro functionality, an aliphatic ester functionality having 2 to 10 carbons, a cycloaliphatic ester functionality having 4 to 10 carbons and an aromatic ester functionality having 4 to 10 carbons; and R3 and R4 are independently at each occurrence a hydrogen, an aliphatic functionality having 1 to 10 carbons or a cycloaliphatic functionality having 3 to 10 carbons.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: February 5, 2008
    Assignee: General Electric Company
    Inventors: Jan Henk Kamps, Jan-Pleun Lens, James A. Mahood, Radhakrishna Arakali Srinivasarao, T. Tilak Raj, Ravindra Vikram Singh
  • Publication number: 20080011513
    Abstract: An injection molded article comprising a polycarbonate composition. The polycarbonate composition is scratch resistant, flame retardant, has a low chlorine and bromine content and is dark colored.
    Type: Application
    Filed: September 25, 2006
    Publication date: January 17, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jan Henk Kamps, Edward Kung, Jan-Pleun Lens, Michael Teruki Takemori, Hendrik Theodorus van de Grampel
  • Publication number: 20080004426
    Abstract: A method of increasing the branching and polydispersity of a polycarbonate includes the steps of: (a) including in the polycarbonate at least one species of an alkyl substituted monomer, and (b) treating the polycarbonate at an elevated temperature and for a sufficient time to increase the branching and polydispersity relative to an otherwise equivalent polycarbonate without alkyl substituents.
    Type: Application
    Filed: January 17, 2007
    Publication date: January 3, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hans-Peter Brack, Bernd Jansen, Jan Henk Kamps, Edward Kung, Jan Pleun Lens, Hans Looij, Han Vermeulen
  • Publication number: 20080004418
    Abstract: Polycarbonates incorporating terminal carbonate groups derived from ester-substituted activated carbonates in a transesterification process have unfavorable properties with respect to color, hydrolytic stability and thermal stability, particularly when the polycarbonate containing such end groups is molded. The number of activated carbonate end groups formed during the melt transesterification formation of polycarbonate can be reduced by reacting a dihydroxy compound with an activated diaryl carbonate in the presence of an esterification catalyst to produce a polycarbonate, in the presence of a monohydroxy chainstopper such as para-cumyl phenol in an amount that results in 35 to 65 mol % of the end groups being derived from the monohydroxy chainstopper. Suitably, the reactants are provided such that the molar ratio of activated diaryl carbonate to the total of dihydroxy compound plus ½ the chainstopping reagent that is less than 1.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 3, 2008
    Applicant: General Electric Company
    Inventors: Bernd Jansen, Jan Henk Kamps, Edward Kung, Patrick Joseph McCloskey, Paul Michael Smigelski
  • Publication number: 20080004407
    Abstract: A method for preparing a molded article includes the steps of (a) obtaining a polycarbonate resin and (b) molding the polycarbonate resin. The polycarbonate resin is made by a transesterification reaction using an activated diaryl carbonate such that the polycarbonate is susceptible to the formation of internal ester linkages (IEL). The method occurs with the proviso that the polycarbonate resin, the molding conditions or both are selected to control the amount of IEL formed during the molding process to a level of less than 0.4 mol %.
    Type: Application
    Filed: March 20, 2007
    Publication date: January 3, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sjef Berndsen, Hans-Peter Brack, Bernd Jansen, Jan Henk Kamps, Edward Kung, Daniel Lowery, Patrick Joseph McCloskey, Paul Michael Smigelski, Dennis Willemse
  • Publication number: 20080004417
    Abstract: Polycarbonates incorporating terminal carbonate groups derived from ester-substituted activated carbonates, for example terminal methyl salicyl carbonate (TMSC) derived from the use of BMSC as the activated carbonate in a transesterification process, have unfavorable properties with respect to color, hydrolytic stability and thermal stability, particularly when the polycarbonate containing such end groups is molded. The number of activated carbonate end groups formed during the melt transesterification formation of polycarbonate can be reduced, however, without sacrificing the benefits of using an activated diaryl carbonate, and without requiring a separate reaction or additional additives by reacting a dihydroxy compound with an activated diaryl carbonate in the presence of an esterification catalyst to produce a polycarbonate, wherein the molar ratio of activated diaryl carbonate to dihydroxy compound is less than 1 when expressed to at least three decimal places, for example 0.996 or less.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 3, 2008
    Applicant: General Electric Company
    Inventors: Bernd Jansen, Jan Henk Kamps, Edward Kung, Patrick Joseph McCloskey, Paul Michael Smigelski