Patents by Inventor Jan Johansson

Jan Johansson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200028745
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Application
    Filed: May 16, 2019
    Publication date: January 23, 2020
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10525239
    Abstract: The disclosure relates to a cerebrospinal fluid (CSF) shunt for treatment of hydrocephalus, comprising a valve having an inlet port and an outlet port, which ports are for draining CSF, and a control port for regulating the drainage of CSF through the valve according to a hydrostatic pressure provided to the control port, which hydrostatic pressure is dependent on the body position of the patient. The disclosure further relates to a method for treatment of hydrocephalus comprising regulating drainage of CSF based on a hydrostatic pressure that is dependent on the body position of the patient.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: January 7, 2020
    Inventors: Niclas Roxhed, Staffan Johansson, Göran Stemme, Anders Eklund, Jan Malm
  • Patent number: 10530399
    Abstract: An transmitter arrangement and a method therein are provided for linearization of an active antenna array. The active antenna array comprises a plurality of antenna elements, which are associated with a plurality of power amplifiers. The active antenna array is further associated with a precoder having a number of input and output ports. The method comprises obtaining a first signal provided to the antenna array via a first input port of the precoder. The method further comprises adapting a pre-distorting linearizer connected to the first input port based on the first signal and on feedback from the plurality of antenna elements, resulting from the propagation of the first signal via the precoder, and via the plurality of power amplifiers. Embodiments are also provided for adapting a pre-distorting linearizer based on a plurality of input signals and feedback from the plurality of antenna elements.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: January 7, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Bernt Johansson, Farshid Ghasemzadeh, Jan-Erik Thillberg, Leonard Rexberg
  • Publication number: 20190374329
    Abstract: A urethral stent for arrangement in the urethra of a patient is disclosed. The ethereal stent includes a tubular body having first and second openings, retention elements connected to the tubular body at the first opening and to the tubular body at a distance from the first retention element, and a valve. The valve includes a valve seat formed by the first opening and a valve element that is pivotably connected to the tubular body and/or the valve seat. The valve is pivotable between a closed position and an open position to close and open the lumen, respectively. The valve is at least partly made of a ferromagnetic material and has an area which exceeds the area of the first opening. A bladder control assembly comprising the urethral stent is also disclosed.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 12, 2019
    Inventors: Johanna Forell, Elin Johansson, Jenny Mottare, Jan Utas
  • Patent number: 10499258
    Abstract: In a heterogeneous network deployment that includes a macro base station and one or more low power nodes, a geometry indicator signal is transmitted to facilitate the determination of geometry or location at a user equipment. The geometry indicator, in general, is transmitted on the same or different frequency as the data signal transmission and is transmitted over a range that is same or different from that of the data signal transmission. The geometry indicator signal may be transmitted by the macro base station, the low power nodes or both.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: December 3, 2019
    Assignee: ZTE Wistron Telecom AB
    Inventors: Aijun Cao, Thorsten Schier, Jan Johansson, Yonghong Gao, Patrick Svedman, Bojidar Hadjiski
  • Patent number: 10493459
    Abstract: A gyratory crusher includes an eccentric having an inner slide bearing surface and an outer slide bearing surface, the inner slide bearing surface defining, together with an opposing slide bearing surface, an inner slide bearing. The outer slide bearing surface defines, together with another opposing slide bearing surface, an outer slide bearing. The eccentric is rotatably connected to a crusher frame so as to allow a rotation about an eccentric axis of rotation, which is fixed relative to the frame. The eccentric axis of rotation is defined by one of the inner and outer slide bearings. The inner slide bearing has a total height-to-diameter quotient (H1/D1) of less than 1.0.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: December 3, 2019
    Assignee: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Niklas Aberg, Jan Johansson, Patric Malmqvist, Arvid Svensson
  • Patent number: 10478402
    Abstract: A nanoparticle having a solid core comprising a biologically active substance, said core being enclosed by an inorganic coating, a method for preparing the nanoparticle, and the use of the nanoparticle in therapy. A kit comprising the nanoparticle and a pharmaceutical composition comprising the nanoparticle.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: November 19, 2019
    Assignee: Nanexa AB
    Inventors: Jan-Otto Carlsson, Anders Johansson, Marten Rooth
  • Publication number: 20190305206
    Abstract: Apparatus and methods enable active compensation for unwanted discrepancies in the superconducting elements of a quantum processor. A qubit may include a primary compound Josephson junction (CJJ) structure, which may include at least a first secondary CJJ structure to enable compensation for Josephson junction asymmetry in the primary CJJ structure. A qubit may include a series LC-circuit coupled in parallel with a first CJJ structure to provide a tunable capacitance. A qubit control system may include means for tuning inductance of a qubit loop, for instance a tunable coupler inductively coupled to the qubit loop and controlled by a programming interface, or a CJJ structure coupled in series with the qubit loop and controlled by a programming interface.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 3, 2019
    Inventors: Richard G. Harris, Andrew J. Berkley, Jan Johansson, Mark Johnson, Mohammad Amin, Paul I. Bunyk
  • Publication number: 20190264913
    Abstract: A burner of a turbomachine has an upstream burner section providing a first fuel and an oxygen containing fluid to an upstream end of a burner interior, a downstream burner section for providing a second fuel to a downstream end of the burner interior, and an intermediate burner section between the two sections. The intermediate burner section has an annular wall surrounding a mid-section of the burner interior. The annular wall has an annular cooling fluid passage, for guiding the oxygen containing fluid, and an annular fuel passage for guiding the second fuel to the downstream burner section, the annular fuel passage being more distant to the burner interior than the annular cooling fluid passage. Two annular slots are incorporated into the annular wall. The upstream burner section has at least one integrated fuel tube through a body of the upstream burner section, configured to feed the annular fuel passage.
    Type: Application
    Filed: August 18, 2017
    Publication date: August 29, 2019
    Applicant: Siemens Aktiengesellschaft
    Inventors: Nicklas Johansson, Jenny Larfeldt, Jan-Erik Lundgren, Daniel Moell, Erik Munktell
  • Patent number: 10397856
    Abstract: Provided is a method and wireless communication system that includes a HetNet, a serving cell with an associated coverage area and multiple additional low power nodes (LPNs) deployed in one or more clusters of cells in the coverage area. The LPNs transmit an associated discovery signal based on the timing of the associated small cell. The serving cell is configured to determine the timing of the cells and therefore the transmission pattern of the discovery signals and the serving cell configures measurement gaps such that the discovery signals are transmitted during the measurement gaps. The network is adapted to accomplish this for various degrees of granularity and timing measurement inaccuracies by placing the measurement gaps and/or adjusting the discovery signal (DS) transmission scheme accordingly.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: August 27, 2019
    Assignee: ZTE (TX) Inc.
    Inventors: Thorsten Schier, Patrick Svedman, Aijun Cao, Jan Johansson, Yonghong Gao, Bojidar Hadjiski
  • Publication number: 20190248847
    Abstract: A recombinant spider silk protein, consisting of no more than 800 amino acids, comprising a set of domains arranged according to the formula (NT)-REP-CT, wherein: the optional NT-domain, if present, comprises a sequence of 100 to 160 amino-acid residues derived from the N-terminal domain of a spider silk protein; the REP-domain comprises a sequence of 30 to 600 amino acid residues derived from the repetitive segment of a spider silk protein; and the CT-domain comprises a sequence of 70 to 120 amino acid residues derived from the C-terminal domain of a spider silk protein selected from: a sequence of 72 to 110 amino acid residues derived from the C-terminal domain of a spider silk protein, wherein the sequence comprises at least 7 residues independently selected from K, R, E and D; a sequence having at least 85% identity to SEQ ID NO: 15 or any one of SEQ ID NO:s 62-65 or 67-73; and a sequence having at least 70% identity to SEQ.
    Type: Application
    Filed: June 29, 2017
    Publication date: August 15, 2019
    Applicant: SPIBER TECHNOLOGIES AB
    Inventors: Anna Rising, Jan Johansson, Marlene Andersson
  • Patent number: 10367677
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: July 30, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rul Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskár, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanil Zheng
  • Patent number: 10314043
    Abstract: A mobile terminal, method and non-transitory computer-readable medium for simultaneously utilizing at least two different radio access technologies (RATs). In one embodiment, the mobile terminal includes: at least one processor configured to control and coordinate first and second radio resource control functions corresponding to first and second RATs, respectively; and map a logical channel to first and second transport channels corresponding to the first and second RATs.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: June 4, 2019
    Assignee: ZTE WISTRON TELECOM AB
    Inventors: Aijun Cao, Yonghong Gao, Jan Johansson, Patrick Svedman, Thorsten Schier, Bojidar Hadjiski
  • Patent number: 10290798
    Abstract: Apparatus and methods enable active compensation for unwanted discrepancies in the superconducting elements of a quantum processor. A qubit may include a primary compound Josephson junction (CJJ) structure, which may include at least a first secondary CJJ structure to enable compensation for Josephson junction asymmetry in the primary CJJ structure. A qubit may include a series LC-circuit coupled in parallel with a first CJJ structure to provide a tunable capacitance. A qubit control system may include means for tuning inductance of a qubit loop, for instance a tunable coupler inductively coupled to the qubit loop and controlled by a programming interface, or a CJJ structure coupled in series with the qubit loop and controlled by a programming interface.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: May 14, 2019
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Richard G. Harris, Andrew J. Berkley, Jan Johansson, Mark Johnson, Mohammad Amin, Paul I. Bunyk
  • Publication number: 20190140957
    Abstract: Systems and methods are disclosed for analyzing traffic received at a network visibility node to determine traffic levels relative to capacity at tools communicatively coupled to the network visibility node and throttling traffic when the traffic levels exceed tool capacity. In an illustrative embodiment, streams received at a network visibility node are analyzed to predict a traffic level) for a given traffic flow. The predicted level of traffic for a given traffic flow is used to decide whether to forward traffic associated with the given traffic flow to a tool port of the network visibility node that is communicatively coupled to an external tool.
    Type: Application
    Filed: November 8, 2017
    Publication date: May 9, 2019
    Inventors: Jan JOHANSSON, Tushar R. JAGTAP, Vikram REDDY, Ujjvala NANGINENI
  • Patent number: 10206216
    Abstract: A network node, method and non-transitory computer-readable medium for simultaneously utilizing at least two different radio access technologies (RATs). In one embodiment, the network node includes at least one processor configured to: activate a first radio resource control (RRC) component corresponding to a first RAT, wherein the first RAT is a default RAT of a mobile terminal configured to communicate with the network node; determine whether a second RAT is available to the mobile terminal based on at least one predetermined criterion; and if the second RAT is available, activate a second RRC component corresponding to the second RAT, wherein both the first RAT and the second RAT are active at the same time to communicate with the mobile terminal.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: February 12, 2019
    Assignee: ZTE Wistron Telecom AB
    Inventors: Aijun Cao, Yonghong Gao, Jan Johansson, Patrick Svedman, Thorsten Schier, Bojidar Hadjiski
  • Publication number: 20190044318
    Abstract: The present invention relates to a circuit and an arrangement for breaking alternating current, the circuit comprising: an input arranged to receive an alternating current (AC); an output arranged to provide the alternating current (AC) to at least one electrical load; at least one controllable switch coupled between the input and the output; an impedance network (Z) coupled between the input and the output; and a transistor network (TN) comprising at least one transistor (TTN1; TTN2), the transistor network (TN) being arranged to control the at least one controllable switch, so as to control the breaking of the alternating current (AC) provided to the at least one electrical load, based on a value of at least one voltage (V1; V2) of at least one node of the impedance network (Z).
    Type: Application
    Filed: January 19, 2017
    Publication date: February 7, 2019
    Applicant: Blixit Tech AB
    Inventors: Jan JOHANSSON, Henrik BORG
  • Publication number: 20190027922
    Abstract: The present invention relates to a circuit (100) for breaking alternating current, the circuit (100) comprising: an input (102) arranged to receive an alternating current (AC); an output (104) arranged to provide the alternating current (AC) to at least one electrical load (200n); at least one controllable switch (106; 108) coupled between the input (102) and the output (104); an impedance network (Z) coupled between the input (102) and the output (104); a controller (110) coupled to a reference ground (112) common to the controller (110) and the at least one controllable switch (106; 108), wherein the controller (110) is arranged to measure at least one measuring voltage (V1; V2) between a node of the impedance network (Z) and the reference ground (112) and to control the at least one controllable switch (106; 108), so as to control the breaking of the alternating current (AC) provided to the at least one electrical load (200n), based on the value of the measured at least one measuring voltage (V1; V2).
    Type: Application
    Filed: January 19, 2017
    Publication date: January 24, 2019
    Applicant: Blixt Tech AB
    Inventors: Jan Johansson, Henrik Borg
  • Publication number: 20190028314
    Abstract: A method of performing fast orthogonal frequency division multiplexing (FOFDM) includes: receiving a symbol transmitted in a multi-carrier communication system, wherein the symbol represents at least part of a transmitted signal, wherein the symbol is modulated based on a discrete cosine transform (DCT) technique; and estimating the symbol by using a widely linear (WL) estimation technique to minimize a difference between the received symbol and the estimated symbol.
    Type: Application
    Filed: January 5, 2017
    Publication date: January 24, 2019
    Inventors: Aijun CAO, Adnan ZAFAR, Chang HE, Pei XIAO, Muhammad IMRAN, Yonghong GAO, Jan JOHANSSON
  • Patent number: D871464
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: December 31, 2019
    Assignee: Sandvik SRP AB
    Inventors: Anders Hallberg, Sonny Ek, Jan Johansson