Patents by Inventor Jan Kautz

Jan Kautz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180075611
    Abstract: One embodiment of the present invention sets forth a technique for estimating a head pose of a user. The technique includes acquiring depth data associated with a head of the user and initializing each particle included in a set of particles with a different candidate head pose. The technique further includes performing one or more optimization passes that include performing at least one iterative closest point (ICP) iteration for each particle and performing at least one particle swarm optimization (PSO) iteration. Each ICP iteration includes rendering the three-dimensional reference model based on the candidate head pose associated with the particle and comparing the three-dimensional reference model to the depth data. Each PSO iteration comprises updating a global best head pose associated with the set of particles and modifying at least one candidate head pose. The technique further includes modifying a shape of the three-dimensional reference model based on depth data.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 15, 2018
    Inventors: Gregory P. MEYER, Shalini GUPTA, Iuri FROSIO, Nagilla Dikpal REDDY, Jan KAUTZ
  • Patent number: 9905196
    Abstract: A computer implemented method of determining a latent image from an observed image is disclosed. The method comprises implementing a plurality of image processing operations within a single optimization framework, wherein the single optimization framework comprises solving a linear minimization expression. The method further comprises mapping the linear minimization expression onto at least one non-linear solver. Further, the method comprises using the non-linear solver, iteratively solving the linear minimization expression in order to extract the latent image from the observed image, wherein the linear minimization expression comprises: a data term, and a regularization term, and wherein the regularization term comprises a plurality of non-linear image priors.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: February 27, 2018
    Assignee: NVIDIA CORPORATION
    Inventors: Dawid Stanislaw Pajak, Felix Heide, Nagilla Dikpal Reddy, Mushfiqur Rouf, Jan Kautz, Kari Pulli, Orazio Gallo
  • Patent number: 9892669
    Abstract: System and method of displaying images in spatial/temporal superresolution by multiplicative superposition of cascaded display layers integrated in a display device. Using an original image with a target spatial/temporal resolution as a priori, a factorization process is performed to derive respective image data for presentation on each display layer. The cascaded display layers may be progressive and laterally shifted with each other, resulting in an effective spatial resolution exceeding the native display resolutions of the display layers. Factorized images may be refreshed on respective display layers in synchronization or out of synchronization.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: February 13, 2018
    Assignee: Nvidia Corporation
    Inventors: Felix Heide, Douglas Lanman, Dikpal Reddy, Jan Kautz, Kari Pulli, David Luebke
  • Publication number: 20180032846
    Abstract: A method, computer readable medium, and system are disclosed for classifying video image data. The method includes the steps of processing training video image data by at least a first layer of a convolutional neural network (CNN) to extract a first set of feature maps and generate classification output data for the training video image data. Spatial classification accuracy data is computed based on the classification output data and target classification output data and spatial discrimination factors for the first layer are computed based on the spatial classification accuracies and the first set of feature maps.
    Type: Application
    Filed: July 26, 2017
    Publication date: February 1, 2018
    Inventors: Xiaodong Yang, Pavlo Molchanov, Jan Kautz
  • Patent number: 9827719
    Abstract: A method for fabricating custom surface reflectance and spatially-varying bi-directional reflectance distribution functions (BDRFs or svBRDFs). The 3D printing method optimizes micro-geometry to produce a normal distribution function (NDF) that can be printed on surfaces with a 3D printer. Particularly, the method involves optimizing the micro-geometry for a wide range of analytic NDFs and simulating the effective reflectance of the resulting surface. Using the results of the simulation, the appearance of an input svBRDF can be reproduced. To this end, the micro-geometry is optimized in a data-driven fashion and distributed on the surface of the printed object. The methods were demonstrated to allow 3D printing svBRDF on planar samples with current 3D printing technology even with a limited set of printing materials, and the described methods have been shown to be naturally extendable to printing svBRDF on arbitrary shapes or 3D objects.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: November 28, 2017
    Assignee: Disney Enterprises, Inc.
    Inventors: Jan Kautz, Olivier Roullier, Bernd Bickel, Marc Alexa, Wojciech Matusik
  • Patent number: 9830703
    Abstract: One embodiment of the present invention sets forth a technique for estimating a head pose of a user. The technique includes acquiring depth data associated with a head of the user and initializing each particle included in a set of particles with a different candidate head pose. The technique further includes performing one or more optimization passes that include performing at least one iterative closest point (ICP) iteration for each particle and performing at least one particle swarm optimization (PSO) iteration. Each ICP iteration includes rendering the three-dimensional reference model based on the candidate head pose associated with the particle and comparing the three-dimensional reference model to the depth data. Each PSO iteration comprises updating a global best head pose associated with the set of particles and modifying at least one candidate head pose. The technique further includes modifying a shape of the three-dimensional reference model based on depth data.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: November 28, 2017
    Assignee: NVIDIA Corporation
    Inventors: Gregory P. Meyer, Shalini Gupta, Iuri Frosio, Nagilla Dikpal Reddy, Jan Kautz
  • Publication number: 20170263041
    Abstract: A system, method and computer program product are provided for generating one or more values for a signal patch using neighboring patches collected based on a distance dynamically computed from a noise distribution of the signal patch. In use, a reference patch is identified from a signal, and a reference distance is computed based on a noise distribution in the reference patch. Neighbor patches are then collected from the signal based on the computed reference distance from the reference patch. Further, the collected neighbor patches are processed with the reference patch to generate one or more values for the reference patch.
    Type: Application
    Filed: January 31, 2017
    Publication date: September 14, 2017
    Inventors: Iuri Frosio, Jan Kautz
  • Publication number: 20170249401
    Abstract: A method, computer readable medium, and system are disclosed for generating a Gaussian mixture model hierarchy. The method includes the steps of receiving point cloud data defining a plurality of points; defining a Gaussian Mixture Model (GMM) hierarchy that includes a number of mixels, each mixel encoding parameters for a probabilistic occupancy map; and adjusting the parameters for one or more probabilistic occupancy maps based on the point cloud data utilizing a number of iterations of an Expectation-Maximum (EM) algorithm.
    Type: Application
    Filed: February 26, 2016
    Publication date: August 31, 2017
    Inventors: Benjamin David Eckart, Kihwan Kim, Alejandro Jose Troccoli, Jan Kautz
  • Patent number: 9720245
    Abstract: A lenticular display device that is effective in increasing both perceived angular resolution and spatial resolution. These desirable results are achieved by modifying the lenslet array to better match the content of a given light field. An optimization algorithm or method (which may be implemented with software run on a computing device) is provided that analyzes an input light field and computes an optimal lenslet size, shape, and arrangement of sets of lenslets across the width of the array to better (or even best) match the input light field given a set of output parameters. The resulting lenticular display device (or print) shows higher detail and smoother motion parallax compared with fixed-size lens arrays. The usefulness of these content-adaptive lenticular prints has been demonstrated or proven using rendered simulations, by generating 3D-printed lens arrays according to the present description, and with user studies.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: August 1, 2017
    Assignee: Disney Enterprises, Inc.
    Inventors: Jan Kautz, James Tompkin, Wojciech Matusik, Simon Heinzle
  • Publication number: 20170206405
    Abstract: A method, computer readable medium, and system are disclosed for detecting and classifying hand gestures. The method includes the steps of receiving an unsegmented stream of data associated with a hand gesture, extracting spatio-temporal features from the unsegmented stream by a three-dimensional convolutional neural network (3DCNN), and producing a class label for the hand gesture based on the spatio-temporal features.
    Type: Application
    Filed: January 9, 2017
    Publication date: July 20, 2017
    Inventors: Pavlo Molchanov, Xiaodong Yang, Shalini De Mello, Kihwan Kim, Stephen Walter Tyree, Jan Kautz
  • Publication number: 20170046827
    Abstract: One embodiment of the present invention sets forth a technique for estimating a head pose of a user. The technique includes acquiring depth data associated with a head of the user and initializing each particle included in a set of particles with a different candidate head pose. The technique further includes performing one or more optimization passes that include performing at least one iterative closest point (ICP) iteration for each particle and performing at least one particle swarm optimization (PSO) iteration. Each ICP iteration includes rendering the three-dimensional reference model based on the candidate head pose associated with the particle and comparing the three-dimensional reference model to the depth data. Each PSO iteration comprises updating a global best head pose associated with the set of particles and modifying at least one candidate head pose. The technique further includes modifying a shape of the three-dimensional reference model based on depth data.
    Type: Application
    Filed: August 12, 2015
    Publication date: February 16, 2017
    Inventors: Gregory P. MEYER, Shalini GUPTA, Iuri FROSIO, Nagilla Dikpal REDDY, Jan KAUTZ
  • Patent number: 9558712
    Abstract: A computer implemented method of determining a latent image from an observed image is disclosed. The method comprises implementing a plurality of image processing operations within a single optimization framework, wherein the single optimization framework comprises solving a linear minimization expression. The method further comprises mapping the linear minimization expression onto at least one non-linear solver. Further, the method comprises using the non-linear solver, iteratively solving the linear minimization expression in order to extract the latent image from the observed image, wherein the linear minimization expression comprises: a data term, and a regularization term, and wherein the regularization term comprises a plurality of non-linear image priors.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: January 31, 2017
    Assignee: NVIDIA CORPORATION
    Inventors: Dawid Stanislaw Pajak, Felix Heide, Nagilla Dikpal Reddy, Mushfiqur Rouf, Jan Kautz, Kari Pulli, Orazio Gallo
  • Publication number: 20170011710
    Abstract: A computer implemented method of determining a latent image from an observed image is disclosed. The method comprises implementing a plurality of image processing operations within a single optimization framework, wherein the single optimization framework comprises solving a linear minimization expression. The method further comprises mapping the linear minimization expression onto at least one non-linear solver. Further, the method comprises using the non-linear solver, iteratively solving the linear minimization expression in order to extract the latent image from the observed image, wherein the linear minimization expression comprises: a data term, and a regularization term, and wherein the regularization term comprises a plurality of non-linear image priors.
    Type: Application
    Filed: September 26, 2016
    Publication date: January 12, 2017
    Inventors: Dawid Stanislaw Pajak, Felix Heide, Nagilla Dikpal Reddy, Mushfiqur Rouf, Jan Kautz, Kari Pulli, Orazio Gallo
  • Publication number: 20160307482
    Abstract: A method, computer readable medium, and system are disclosed for generating mixed-primary data for display. The method includes the steps of receiving a source image that includes a plurality of pixels, dividing the source image into a plurality of blocks, analyzing the source image based on an image decomposition algorithm, encoding chroma information and modulation information to generate a video signal, and transmitting the video signal to a mixed-primary display. The chroma information and modulation information correspond with two or more mixed-primary color components and are generated by the image decomposition algorithm to minimize error between a reproduced image and the source image. The two or more mixed-primary colors selected for each block of the source image are not limited to any particular set of colors and each mixed-primary color component may be selected from any color capable of being reproduced by the mixed-primary display.
    Type: Application
    Filed: April 15, 2016
    Publication date: October 20, 2016
    Inventors: Fu-Chung Huang, David Patrick Luebke, Jan Kautz, Dawid Stanislaw Pajak
  • Publication number: 20160075090
    Abstract: A method for fabricating custom surface reflectance and spatially-varying bi-directional reflectance distribution functions (BDRFs or svBRDFs). The 3D printing method optimizes micro-geometry to produce a normal distribution function (NDF) that can be printed on surfaces with a 3D printer. Particularly, the method involves optimizing the micro-geometry for a wide range of analytic NDFs and simulating the effective reflectance of the resulting surface. Using the results of the simulation, the appearance of an input svBRDF can be reproduced. To this end, the micro-geometry is optimized in a data-driven fashion and distributed on the surface of the printed object. The methods were demonstrated to allow 3D printing svBRDF on planar samples with current 3D printing technology even with a limited set of printing materials, and the described methods have been shown to be naturally extendable to printing svBRDF on arbitrary shapes or 3D objects.
    Type: Application
    Filed: November 19, 2015
    Publication date: March 17, 2016
    Inventors: JAN KAUTZ, OLIVIER ROULLIER, BERND BICKEL, MARC ALEXA, WOJCIECH MATUSIK
  • Patent number: 9266287
    Abstract: A method for fabricating custom surface reflectance and spatially-varying bi-directional reflectance distribution functions (BDRFs or svBRDFs). The 3D printing method optimizes micro-geometry to produce a normal distribution function (NDF) that can be printed on surfaces with a 3D printer. Particularly, the method involves optimizing the micro-geometry for a wide range of analytic NDFs and simulating the effective reflectance of the resulting surface. Using the results of the simulation, the appearance of an input svBRDF can be reproduced. To this end, the micro-geometry is optimized in a data-driven fashion and distributed on the surface of the printed object. The methods were demonstrated to allow 3D printing svBRDF on planar samples with current 3D printing technology even with a limited set of printing materials, and the described methods have been shown to be naturally extendable to printing svBRDF on arbitrary shapes or 3D objects.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: February 23, 2016
    Assignee: Disney Enterprises, Inc.
    Inventors: Jan Kautz, Olivier Roullier, Bernd Bickel, Marc Alexa, Wojciech Matusik
  • Patent number: 9202310
    Abstract: A three-dimensional relief can be produced from one or more two-dimensional digital (2D) images. A height field is computed from the 2D images and illumination direction information. The height field comprises a multiplicity of geometric surface elements arrayed in a 2D field corresponding to the pixels of the one or more 2D images. Each geometric surface element corresponds to a pixel of each of the digital images and has at least one height parameter representing a displacement from a surface floor. Once the height field is computed, optimizations can be made to the height field including adding and adjusting albedo and glossy surface finishing. The height field can be used to fabricate relief elements in a material, such that each relief element corresponds in shape, position in the height field, and height above the surface floor, to one of the geometric surface elements in the height field.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: December 1, 2015
    Assignee: Disney Enterprises, Inc.
    Inventors: Bernd Bickel, Marc Alexa, Jan Kautz, Wojciech Matusik, Fabrizio Pece
  • Publication number: 20150310798
    Abstract: System and method of displaying images in temporal superresolution by multiplicative superposition of cascaded display layers integrated in a display device. Using an original video with a target temporal resolution as a priori, a factorization process is performed to derive respective image data for presentation on each display layer. The multiple layers are refreshed in staggered intervals to synthesize a video with an effective refresh rate exceeding that of each individual display layer, e.g., by a factor equal to the number of layers. Further optically averaging neighboring pixels can minimize artifacts.
    Type: Application
    Filed: March 17, 2015
    Publication date: October 29, 2015
    Inventors: Felix Heide, Douglas Lanman, Dikpal Reddy, Jan Kautz, Kari Pulli, David Luebke
  • Publication number: 20150310789
    Abstract: System and method of displaying images in spatial/temporal superresolution by multiplicative superposition of cascaded display layers integrated in a display device. Using an original image with a target spatial/temporal resolution as a priori, a factorization process is performed to derive respective image data for presentation on each display layer. The cascaded display layers may be progressive and laterally shifted with each other, resulting in an effective spatial resolution exceeding the native display resolutions of the display layers. Factorized images may be refreshed on respective display layers in synchronization or out of synchronization.
    Type: Application
    Filed: March 17, 2015
    Publication date: October 29, 2015
    Inventors: Felix Heide, Douglas Lanman, Dikpal Reddy, Jan Kautz, Kari Pulli, David Luebke
  • Publication number: 20150206504
    Abstract: A computer implemented method of determining a latent image from an observed image is disclosed. The method comprises implementing a plurality of image processing operations within a single optimization framework, wherein the single optimization framework comprises solving a linear minimization expression. The method further comprises mapping the linear minimization expression onto at least one non-linear solver. Further, the method comprises using the non-linear solver, iteratively solving the linear minimization expression in order to extract the latent image from the observed image, wherein the linear minimization expression comprises: a data term, and a regularization term, and wherein the regularization term comprises a plurality of non-linear image priors.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 23, 2015
    Inventors: Dawid Stanislaw Pajak, Felix Heide, Nagilla Dikpal Reddy, Mushfiqur Rouf, Jan Kautz, Kari Pulli, Orazio Gallo