Patents by Inventor JAN KRIEGER

JAN KRIEGER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11752775
    Abstract: A method for determining print defects in a printing operation carried out on an inkjet printing machine for processing a print job includes using a camera system to record and digitize printed products generated during the printing operation, feeding the camera image having been thus generated to a detection algorithm on the computer, alerting a machine control unit when print defects are found, and ejecting the printed product through a waste ejector if necessary. The detection algorithm separates color separations of the camera images, detects the print defects in the color separations, links images of the individual color separations to form a candidate image, filters the candidate image, enters the remaining detected print defects into a list, and forwards the list to the machine control unit of the printing machine.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: September 12, 2023
    Assignee: Heidelberger Druckmaschinen AG
    Inventors: Jan Krieger, Frank Schumann
  • Patent number: 11580630
    Abstract: A method of inspecting images on printed products by a computer in a printing machine. Printed products are recorded and digitized by an image sensor of an image inspection system in the course of the image inspection process, and the computer compares them to a digital reference image. If deviations are found, the defective printed products are removed. The computer analyzes the deviations found in the course of the image inspection process together with further data from other system parts and from the machine, determines specific defect classes and the causes thereof based on the defects by machine learning processes, assigns the defects found in the image inspection process to the defect classes in a corresponding way, and displays the classified detected defects with their defect classes and causes to an operator of the machine so that the operator can initiate specific measures to eliminate the defect causes.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: February 14, 2023
    Assignee: Heidelberger Druckmaschinen AG
    Inventors: Frank Soltwedel, Robert Mueller, Jan Krieger, Frank Schumann, Peter Eisele
  • Patent number: 11288793
    Abstract: A method for inspecting printed products of a machine for processing printing substrates includes recording and digitizing produced printed products by using at least one image sensor and analyzing the printed products by using a computer to find potential defects. Defects in the printed products are detected by the computer by comparing the recorded and digitized printed image with a digital reference image, analyzing occurring deviations, and marking defective printed products in a manner suitable for removal. The computer spatially subdivides every digitized printed image into regions with deviations, calculates the time required to analyze every one of the regions, and terminates the analysis of a digitized printed image when the time required to analyze the regions exceeds a predefined value of time per digitized printed image.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: March 29, 2022
    Assignee: Heidelberger Druckmaschinen AG
    Inventors: Frank Schumann, Jan Krieger, Bennet Carstensen, Peter Eisele
  • Patent number: 11267264
    Abstract: A method for automated alignment and register measurement in a printing press provides for test patterns having multiple color separations to be printed by the printing press on a printing substrate, recorded by using at least one image sensor of an image acquisition system as a digital overall image, evaluated by a computer with respect to an alignment/register offset and then corrected by the computer for the alignment/register offset. Circular measuring marks having known diameter for each color separation are integrated into the test patterns and the computer ascertains the center position of each circular measuring mark with subpixel accuracy and thus computes the alignment/register offset by cutting out an image region having at least one circular measuring mark from the digital overall image and determining parameters of a model of a printing point of the circular measuring mark from the digital overall image.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: March 8, 2022
    Assignee: Heidelberger Druckmashinen AG
    Inventors: Jan Krieger, Immanuel Fergen, Christoph Godau, Timo Volk, Manfred Schneider
  • Publication number: 20210287353
    Abstract: A method of inspecting images on printed products by a computer in a printing machine. Printed products are recorded and digitized by an image sensor of an image inspection system in the course of the image inspection process, and the computer compares them to a digital reference image. If deviations are found, the defective printed products are removed. The computer analyzes the deviations found in the course of the image inspection process together with further data from other system parts and from the machine, determines specific defect classes and the causes thereof based on the defects by machine learning processes, assigns the defects found in the image inspection process to the defect classes in a corresponding way, and displays the classified detected defects with their defect classes and causes to an operator of the machine so that the operator can initiate specific measures to eliminate the defect causes.
    Type: Application
    Filed: February 4, 2021
    Publication date: September 16, 2021
    Inventors: Frank Soltwedel, Robert Mueller, Jan Krieger, Frank Schumann, Peter Eisele
  • Publication number: 20210256678
    Abstract: A method for inspecting printed products of a machine for processing printing substrates includes recording and digitizing produced printed products by using at least one image sensor and analyzing the printed products by using a computer to find potential defects. Defects in the printed products are detected by the computer by comparing the recorded and digitized printed image with a digital reference image, analyzing occurring deviations, and marking defective printed products in a manner suitable for removal. The computer spatially subdivides every digitized printed image into regions with deviations, calculates the time required to analyze every one of the regions, and terminates the analysis of a digitized printed image when the time required to analyze the regions exceeds a predefined value of time per digitized printed image.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 19, 2021
    Inventors: FRANK SCHUMANN, JAN KRIEGER, BENNET CARSTENSEN, PETER EISELE
  • Publication number: 20200223230
    Abstract: A method for determining print defects in a printing operation carried out on an inkjet printing machine for processing a print job includes using a camera system to record and digitize printed products generated during the printing operation, feeding the camera image having been thus generated to a detection algorithm on the computer, alerting a machine control unit when print defects are found, and ejecting the printed product through a waste ejector if necessary. The detection algorithm separates color separations of the camera images, detects the print defects in the color separations, links images of the individual color separations to form a candidate image, filters the candidate image, enters the remaining detected print defects into a list, and forwards the list to the machine control unit of the printing machine.
    Type: Application
    Filed: January 13, 2020
    Publication date: July 16, 2020
    Inventors: JAN KRIEGER, FRANK SCHUMANN
  • Patent number: 10603923
    Abstract: A method for detecting defective printing nozzles in an inkjet printing machine includes printing a multi-row printing nozzle test chart formed of horizontal rows of equidistant vertical lines periodically underneath one another, with only printing nozzles in a print head contributing to every row of the test chart corresponding to the horizontal rows. An area coverage element geometrically associated with the test chart is printed, both elements are recorded by an image sensor and analyzed by the computer. The computer analyzes the recorded area coverage element to detect print defects and allocates defects to a region of geometrically close printing nozzles. An analysis of the test chart in the region identifies nozzles causing the defect. Defective printing nozzles are detected based on thresholds, the detected printing nozzles are then compensated, and in the analysis of the recorded area coverage element, influences of the sensor are eliminated by shading correction.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: March 31, 2020
    Assignee: Heidelberger Druckmaschinen AG
    Inventors: Johannes Muehl, Hans Koehler, Roland Stenzel, Andreas Henn, Martin Mayer, Steffen Neeb, Frank Muth, Jan Krieger, Nicklas Raymond Norrick, Mina Abosetta
  • Patent number: 10589519
    Abstract: A method for detecting printing nozzle errors in an inkjet printing machine provides a high degree of robustness in the detection of errors by printing a nozzle test pattern in the inkjet printing machine. The test pattern is then digitalized by using a camera and transmitted to a computer for evaluation. There, the recorded test pattern is investigated by using methods of digital image processing, such as a Fourier analysis, and evaluated in the frequency range with regard to specific anticipated printing nozzle errors. Specific printing nozzle errors can be detected especially on the basis of amplitude, phase and variance errors in the signal in the frequency range. Moreover, by using the phase error, it is possible to evaluate whether the two print heads are disposed in an incorrect adjustment position relative to one another by calculating displacements of the phase error in transition regions of two print heads.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: March 17, 2020
    Assignee: Heidelberger Druckmaschinen AG
    Inventors: Frank Muth, Jan Krieger, Wolfgang Geissler
  • Publication number: 20200079119
    Abstract: A method for automated alignment and register measurement in a printing press provides for test patterns having multiple color separations to be printed by the printing press on a printing substrate, recorded by using at least one image sensor of an image acquisition system as a digital overall image, evaluated by a computer with respect to an alignment/register offset and then corrected by the computer for the alignment/register offset. Circular measuring marks having known diameter for each color separation are integrated into the test patterns and the computer ascertains the center position of each circular measuring mark with subpixel accuracy and thus computes the alignment/register offset by cutting out an image region having at least one circular measuring mark from the digital overall image and determining parameters of a model of a printing point of the circular measuring mark from the digital overall image.
    Type: Application
    Filed: September 6, 2019
    Publication date: March 12, 2020
    Inventors: JAN KRIEGER, IMMANUEL FERGEN, CHRISTOPH GODAU, TIMO VOLK, MANFRED SCHNEIDER
  • Patent number: 10500842
    Abstract: A method calibrates image sensors and adjusts print heads in an inkjet printing machine via a computer. The method includes printing a test print chart, recording the printed test print chart via an image sensor to create a digital image, determining a coordinate transformation between the coordinates on the test print chart and the coordinates of the image sensor and the print heads, implementing a computer-assisted evaluation process of the digital image to determine the coordinates on the test print chart, deriving correction values for print head adjustment and camera calibration from results of the coordinate transformation and/or the comparison thereof with the determined measured values, and implementing the print head adjustment and the camera calibration by the computer. The test print chart has filled circular discs. The filled circular discs have a minimum diameter that is selected for them to function even if defective printing nozzles occur.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: December 10, 2019
    Assignee: Heidelberger Druckmaschinen AG
    Inventors: Jan Krieger, Frank Muth
  • Publication number: 20190248153
    Abstract: A method for detecting defective printing nozzles in an inkjet printing machine includes printing a multi-row printing nozzle test chart formed of horizontal rows of equidistant vertical lines periodically underneath one another, with only printing nozzles in a print head contributing to every row of the test chart corresponding to the horizontal rows. An area coverage element geometrically associated with the test chart is printed, both elements are recorded by an image sensor and analyzed by the computer. The computer analyzes the recorded area coverage element to detect print defects and allocates defects to a region of geometrically close printing nozzles. An analysis of the test chart in the region identifies nozzles causing the defect. Defective printing nozzles are detected based on thresholds, the detected printing nozzles are then compensated, and in the analysis of the recorded area coverage element, influences of the sensor are eliminated by shading correction.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 15, 2019
    Inventors: JOHANNES MUEHL, HANS KOEHLER, ROLAND STENZEL, ANDREAS HENN, MARTIN MAYER, STEFFEN NEEB, FRANK MUTH, JAN KRIEGER, NICKLAR RAYMOND NORRICK, MINA ABOSETTA
  • Publication number: 20190077143
    Abstract: A method calibrates image sensors and adjusts print heads in an inkjet printing machine via a computer. The method includes printing a test print chart, recording the printed test print chart via an image sensor to create a digital image, determining a coordinate transformation between the coordinates on the test print chart and the coordinates of the image sensor and the print heads, implementing a computer-assisted evaluation process of the digital image to determine the coordinates on the test print chart, deriving correction values for print head adjustment and camera calibration from results of the coordinate transformation and/or the comparison thereof with the determined measured values, and implementing the print head adjustment and the camera calibration by the computer. The test print chart has filled circular discs. The filled circular discs have a minimum diameter that is selected for them to function even if defective printing nozzles occur.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 14, 2019
    Inventors: JAN KRIEGER, FRANK MUTH
  • Publication number: 20170341371
    Abstract: A method for detecting printing nozzle errors in an inkjet printing machine provides a high degree of robustness in the detection of errors by printing a nozzle test pattern in the inkjet printing machine. The test pattern is then digitalized by using a camera and transmitted to a computer for evaluation. There, the recorded test pattern is investigated by using methods of digital image processing, such as a Fourier analysis, and evaluated in the frequency range with regard to specific anticipated printing nozzle errors. Specific printing nozzle errors can be detected especially on the basis of amplitude, phase and variance errors in the signal in the frequency range. Moreover, by using the phase error, it is possible to evaluate whether the two print heads are disposed in an incorrect adjustment position relative to one another by calculating displacements of the phase error in transition regions of two print heads.
    Type: Application
    Filed: May 25, 2017
    Publication date: November 30, 2017
    Inventors: FRANK MUTH, JAN KRIEGER, WOLFGANG GEISSLER