Patents by Inventor Jan L. Allen

Jan L. Allen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230275224
    Abstract: A composition of matter and method includes Li1+x+zM(II)0.5?2x?zM(III)x+yM(IV)1.5?2y?z M(V)yM(V)zO4. M(II) includes any of Mg, Co, Ni, Cu, and Zn. M(III) includes any of Al, Cr, Fe, Ga, and In. M(IV) includes any of Ti, Mn, and Ge. M(V) includes any of Nb, Ta, Sb, and Bi. Additionally, 0?x?0.25, 0?y?0.75, 0?z?0.5, and (x+z)>0.
    Type: Application
    Filed: April 11, 2023
    Publication date: August 31, 2023
    Inventor: Jan L. Allen
  • Publication number: 20220293927
    Abstract: A composition of matter and method includes Li1+x+zM(II)0.5?2x?zM(III)x+yM(IV)1.5?2y?zM(V)yM(V)zO4. M(II) includes any of Mg, Co, Ni, Cu, and Zn. M(III) includes any of Al, Cr, Fe, Ga, and In. M(IV) includes any of Ti, Mn, and Ge. M(V) includes any of Nb, Ta, Sb, and Bi. Additionally, 0?x?0.25, 0?y?0.75, 0?z?0.5, and (x+z)>0.
    Type: Application
    Filed: March 3, 2021
    Publication date: September 15, 2022
    Inventor: Jan L. Allen
  • Publication number: 20210184263
    Abstract: The disclosure provides an alkali metal or alkaline earth metal rechargeable battery including an electrolyte including an ionic liquid and an alkali metal salt or alkaline earth metal salt. The battery also includes a negative electrode including a surface that contacts the electrolyte. The negative electrode also includes a negative electrode active material. The battery further includes a positive electrode including a surface that contacts the electrolyte. The positive electrode also includes a positive electrode active material. The battery also includes an electronically insulative separator between the positive electrode and the negative electrode and a casing surrounding the electrolyte, electrodes, and separator. The battery additionally includes a pressure application system that applies pressure to at least a portion of the electrode surfaces contacting the electrolyte.
    Type: Application
    Filed: February 24, 2021
    Publication date: June 17, 2021
    Inventors: DONGQIANG LIU, AMELIE FORAND, CHISU KIM, KARIM ZAGHIB, JAN L. ALLEN, SAMUEL A. DELP, III, RICHARD T. JOW
  • Publication number: 20210184209
    Abstract: The disclosure provides a coated positive electrode active material particle including an active material having the general chemical formula AxMyEz(XO4)q, wherein A is an alkali metal or an alkaline earth metal, M includes cobalt, E is a non-electrochemically active metal, a boron group element, or silicon or any alloys or combinations thereof, X is phosphorus or sulfur or a combination thereof, 0<x?1, y>0, z?0, q>0, and the relative values of x, y, z, and q are such that the general chemical formula is charge balanced. The disclosure provides a method of attritor-mixing the active material. The disclosure provides an alkali metal or alkaline earth metal rechargeable battery including an electrolyte including an ionic liquid and an alkali metal salt or alkaline earth metal salt. The battery includes a pressure application system that applies pressure to at least a portion of the electrode surfaces contacting the electrolyte.
    Type: Application
    Filed: February 24, 2021
    Publication date: June 17, 2021
    Inventors: DONGQIANG LIU, AMELIE FORAND, CHISU KIM, KARIM ZAGHIB, JAN L. ALLEN, SAMUEL A. DELP, III, RICHARD T. JOW, MYUNGHUN CHO, ABDELBAST GUERFI
  • Patent number: 10586985
    Abstract: A positive electrode material having a nominal stoichiometry Li1+y/2Co1?x?y?z?dSizFexMyM?d(PO4)1+y/2 where M is a trivalent cation selected from at least one of Cr, Ti, Al, Mn, Ni, V, Sc, La and/or Ga, M? is a divalent cation selected from at least one of Mn, Ni, Zn, Sr, Cu, Ca and/or Mg, y is within a range of 0<y?0.10 and x is within a range of 0?x?0.2. The use of double compositional modification to LiCoPO4 increases the discharge capacity from ˜100 mAh/g to about 130 mAh/g while retaining the discharge capacity retention of the singly Fe-substituted LiCoPO4. Additional compositional modification to include Si increases the cycle life and greatly improved the coulombic efficiency to between 97-100% at a C/3 cycle rate.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: March 10, 2020
    Assignee: GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE ARMY
    Inventors: Jan L. Allen, Joshua L. Allen, Samuel A. Delp, III, Jeffrey B. Wolfenstine, T. Richard Jow
  • Publication number: 20190245205
    Abstract: A positive electrode material having a nominal stoichiometry Li1+y/2Co1?x?y?z?dSizFexMyM?d(PO4)1+y/2 where M is a trivalent cation selected from at least one of Cr, Ti, Al, Mn, Ni, V, Sc, La and/or Ga, M? is a divalent cation selected from at least one of Mn, Ni, Zn, Sr, Cu, Ca and/or Mg, y is within a range of 0<y?0.10 and x is within a range of 0?x?0.2. The use of double compositional modification to LiCoPO4 increases the discharge capacity from ˜100 mAh/g to about 130 mAh/g while retaining the discharge capacity retention of the singly Fe-substituted LiCoPO4. Additional compositional modification to include Si increases the cycle life and greatly improved the coulombic efficiency to between 97-100% at a C/3 cycle rate.
    Type: Application
    Filed: November 27, 2018
    Publication date: August 8, 2019
    Inventors: Jan L. Allen, Joshua L. Allen, Samuel A. Delp, III, Jeffrey B. Wolfenstine, T. Richard Jow
  • Patent number: 10147946
    Abstract: A positive electrode material having a nominal stoichiometry Li1+y/2Co1?x?y?z?dSizFexMyM?d(PO4)1+y/2 where M is a trivalent cation selected from at least one of Cr, Ti, Al, Mn, Ni, V, Sc, La and/or Ga, M? is a divalent cation selected from at least one of Mn, Ni, Zn, Sr, Cu, Ca and/or Mg, y is within a range of 0<y?0.10 and x is within a range of 0?x?0.2. The use of double compositional modification to LiCoPO4 increases the discharge capacity from ˜100 mAh/g to about 130 mAh/g while retaining the discharge capacity retention of the singly Fe-substituted LiCoPO4. Additional compositional modification to include Si increases the cycle life and greatly improved the coulombic efficiency to between 97-100% at a C/3 cycle rate.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: December 4, 2018
    Assignee: The United States of America, as represented by the secretary of the army
    Inventors: Jan L. Allen, Joshua L. Allen, Samuel A. Delp, III, Jeffrey B. Wolfenstine, T. Richard Jow
  • Publication number: 20160233508
    Abstract: A positive electrode material having a nominal stoichiometry Li1+y/2Co1?x?y?z?dSizFexMyM?d(PO4)1+y/2 where M is a trivalent cation selected from at least one of Cr, Ti, Al, Mn, Ni, V, Sc, La and/or Ga, M? is a divalent cation selected from at least one of Mn, Ni, Zn, Sr, Cu, Ca and/or Mg, y is within a range of 0<y?0.10 and x is within a range of 0?x?0.2. The use of double compositional modification to LiCoPO4 increases the discharge capacity from ˜100 mAh/g to about 130 mAh/g while retaining the discharge capacity retention of the singly Fe-substituted LiCoPO4. Additional compositional modification to include Si increases the cycle life and greatly improved the coulombic efficiency to between 97-100% at a C/3 cycle rate.
    Type: Application
    Filed: April 15, 2016
    Publication date: August 11, 2016
    Inventors: Jan L. Allen, Joshua L. Allen, Samuel A. Delp, III, Jeffrey B. Wolfenstine, T. Richard Jow
  • Patent number: 9356291
    Abstract: A positive electrode material having a nominal stoichiometry Li1+y/2Co1?x?y?z?dSizFexMyM?d(PO4)1+y/2 where M is a trivalent cation selected from at least one of Cr, Ti, Al, Mn, Ni, V, Sc, La and/or Ga, M? is a divalent cation selected from at least one of Mn, Ni, Zn, Sr, Cu, Ca and/or Mg, y is within a range of 0<y?0.10 and x is within a range of 0?x?0.2. The use of double compositional modification to LiCoPO4 increases the discharge capacity from ˜100 mAh/g to about 130 mAh/g while retaining the discharge capacity retention of the singly Fe-substituted LiCoPO4. Additional compositional modification to include Si increases the cycle life and greatly improved the coulombic efficiency to between 97-100% at a C/3 cycle rate.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: May 31, 2016
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE ARMY
    Inventors: Jan L. Allen, Joshua L. Allen, Samuel A. Delp, III, Jeffrey B. Wolfenstine, T. Richard Jow
  • Patent number: 9114779
    Abstract: A lithiated metal phosphate material substituted by divalent atoms at the M2 site and trivalent atoms, a portion of which are present at both the M2 and the M1 sites. The substituted material has the general formula of Li1-3tM2+1-t-dTt3+Dd2+PO4, wherein M is selected from the group consisting of Mn2+, Co2+, Ni2+ and combinations thereof; T is selected from the group consisting of Fe3+, Al3+ and Ga3+ and a portion of said T resides at the M2 sites, said portion being greater than 0 and no more than 99 percent of the total T atoms; D is selected from the group consisting of Fe2+, Mn2+, Co2+, Ni2+, Mg2+, Zn2+, Ca2+ and combinations thereof; d has a value greater than 0 and no more than 0.3; and t has a value in the range of 0 to 0.3. Also disclosed are electrodes which incorporate the substituted metal phosphate material and are disposed in electrochemical cells as well as batteries, including rechargeable lithium ion batteries.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: August 25, 2015
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Jan L. Allen, T. Richard Jow, Jeffrey Wolfenstine
  • Publication number: 20150155558
    Abstract: A positive electrode material having a nominal stoichiometry Li1+y/2Co1?x?y?z?dSizFexMyM?d(PO4)1+y/2 where M is a trivalent cation selected from at least one of Cr, Ti, Al, Mn, Ni, V, Sc, La and/or Ga, M? is a divalent cation selected from at least one of Mn, Ni, Zn, Sr, Cu, Ca and/or Mg, y is within a range of 0<y?0.10 and x is within a range of 0?x?0.2. The use of double compositional modification to LiCoPO4 increases the discharge capacity from ˜100 mAh/g to about 130 mAh/g while retaining the discharge capacity retention of the singly Fe-substituted LiCoPO4.
    Type: Application
    Filed: May 20, 2014
    Publication date: June 4, 2015
    Applicant: U.S. Army Research Laboratory ATTN: RDRL-LOC-I
    Inventors: Jan L. Allen, Joshua L. Allen, Samuel A. Delp, III, Jeffrey B. Wolfenstine, T. Richard Jow
  • Publication number: 20120208067
    Abstract: A lithiated metal phosphate material substituted by divalent atoms at the M2 site and trivalent atoms, a portion of which are present at both the M2 and the M1 sites. The substituted material has the general formula of Li1-3tM2+1-t-dT3+Dd2+PO4, wherein M is selected from the group consisting of Mn2+, Co2+, Ni2+ and combinations thereof; T is selected from the group consisting of Fe3+, Al3+ and Ga3+ and a portion of said T resides at the M2 sites, said portion being greater than 0 and no more than 99 percent of the total T atoms; D is selected from the group consisting of Fe2+, Mn2+, Co2+, Ni2+, Mg2-+, Zn2+, Ca2+ and combinations thereof; d has a value greater than 0 and no more than 0.3; and t has a value in the range of 0 to 0.3. Also disclosed are electrodes which incorporate the substituted metal phosphate material and are disposed in electrochemical cells as well as batteries, including rechargeable lithium ion batteries.
    Type: Application
    Filed: June 6, 2011
    Publication date: August 16, 2012
    Applicant: U.S. Government as Represented by the Secretary of the Army
    Inventors: Jan L. Allen, T. Richard Jow, Jeffrey Wolfenstine
  • Patent number: 7629080
    Abstract: A lithiated metal phosphate material is doped by a portion of the lithium atoms which are present at the M2 sites of the material. The doped material has the general formula: Li1+xM1?x?dDdPO4. In the formula, M is a divalent ion of one or more of Fe, Mn, Co and Ni. D is a divalent metal ion which is one or more of Mg, Ca, Zn, and Ti. It is present in an amount represented by the subscript d which has a value ranging from 0 to 0.1. The portion of the lithium which is present at the M2 octahedral sites of the material is represented by the subscript x and is greater than 0 and no more than 0.07. Also disclosed are electrodes which incorporate the material as well as batteries, including lithium ion batteries, which include cathodes fabricated from the doped, lithiated metal phosphate materials.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: December 8, 2009
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Jan L. Allen, T. Richard Jow
  • Patent number: 6923952
    Abstract: Disclosed are enhanced efficacy antiperspirant compositions containing a strontium salt and/or a calcium salt. In particular, there is disclosed an antiperspirant composition comprising a dermatologically acceptable carrier vehicle, about 8% to about 22% (USP) of an aluminum-zirconium chlorohydrate-gly antiperspirant salt, wherein the antiperspirant salt has an HPLC peak 5 area of at least 33%, and about 0.5% to about 15%, preferably about 1% to about 6%, by weight, of a water soluble salt selected from the group consisting of a water soluble strontium salt, a water soluble calcium salt and a mixture thereof. It has been found that the inclusion of a strontium salt and/or a calcium salt boosts the efficacy of a high peak 5 antiperspirant salt. As a preferred feature, the antiperspirant salt and the water soluble salt are dissolved in at least a portion of the carrier vehicle.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: August 2, 2005
    Assignee: The Gillette Company
    Inventors: Jan L. Allen, Yan-Fei Shen